High-resolution drone lidar for Mediterranean archaeology: point classification, feature detection, and the potential for cultural heritage management
Abstract
The introduction of airborne laser scanning (ALS) or lidar into the archaeologist’s ever-expanding toolkit has profoundly impacted our understanding of premodern landscapes. Most notably used for the detection of archaeological sites in densely vegetated environments, airborne lidar has been an effective tool for recording the surface topography of a landscape beneath the upper canopies of forests or jungles. While the collection of aerial lidar data for archaeology has traditionally required significant funding and collaboration with specialist firms, recent developments in lightweight and affordable sensors mounted on unmanned aerial vehicles (UAVs) or drones have increased access to lidar data collection. With drone lidar, archaeologists can now capture smaller areas of interest at much higher resolutions than traditional airborne lidar, enabling precise and efficient documentation of landscapes with complex topography or ephemeral archaeological features. With readily available lidar sensors and medium-payload consumer drones, archaeologists are now able to bring lidar data from new regions into dialogue with more established zones of lidar-based research. Additionally, the higher resolution afforded by low-altitude flights and direct control over data collection enables archaeologists to explore innovative applications of aerial lidar and pose new questions about premodern landscapes.
References
Abate N., R. Goffredo, D. Dato, A. Minervino Amodio, A. Loperte, A. Frisetti, G. Ciccone, S.E. Zaia, M. Sileo, R. Lasaponara and N. Masini 2025. Adopting an open-source processing strategy for LiDAR drone data analysis in under-canopy archaeological sites: a case study of Torre Castiglione (Apulia). Remote Sensing 17(7): 1134. American Society for Photogrammetry and Remote Sensing 2011. LAS Specification (ver. 1.4–R15, July 2019): Bethesda, MD: American Society for Photogrammetry and Remote Sensing.
Auld-Thomas L., M.A. Canuto, A.V. Morlet, F. Estrada-Belli, D. Chatelain, D. Matadamas, M. Pigott and J.C. Fernández Díaz 2024. Running out of empty space: environmental lidar and the crowded ancient landscape of Campeche, Mexico. Antiquity 98: 1340-1358.
Balsi, M., S. Esposito, P. Fallavollita, M.G. Melis and M. Milanese 2021. Preliminary archeological site survey by UAV-borne lidar: a case study. Remote Sensing 13(3): 332.
Bennett, R. and D. Cowley, D. (eds) 2025. Guidelines for the use of Airborne Laser Scanning (Lidar) in Archaeology (EAC Guidelines 10). Brussels: European Archaeological Council.
Berge, S.L. 2009. Gravrøyser på Mølen. Værvågen, 4088/34, Larvik kommune Vestfold. Oslo: University of Oslo Museum of Cultural History.
Bernardini, F. and G. Vinci 2020. Archaeological landscape in central northern Istria (Croatia) revealed by airborne LiDAR: from prehistoric sites to Roman centuriation. Archaeological and Anthropological Sciences 12(133): 1-18.
Bewley, R.H. 2003. Aerial survey for archaeology. The Photogrammetric Record 18: 273–292.
Blom Geomatics 2010. Project report, 1875 Larvik area. Sollentuna: Blom Sweden AB.
Brodu, N. and D. Lague 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing 68: 121-134.
Calderone, D., N. Lercari, D. Tanasi, D. Busch, R. Hom and R. Lanteri 2024. Tackling the thorny dilemma of mapping southeastern Sicily’s coastal archaeology beneath dense mediterranean vegetation: a drone‐based LiDAR Approach. Archaeological Prospection 32: 139-158.
Canuto, M.A., F. Estrada-Belli, T.G. Garrison, S.D. Houston, M.J. Acuña, M. Kováč, D. Marken, P. Nondédéo, L. Auld-Thomas, C. Castanet, D. Chatelain, C.R. Chiriboga, T. Drápela, T. Lieskovský, A. Tokovinine, A. Velasquez, J.C. Fernández-Díaz and R. Shrestha 2018. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 361(6409): eaau0137.
Carleton, W.C., S. Klassen, J. Niles-Weed, D. Evans, P. Roberts and H.S. Groucutt 2023. Bayesian regression versus machine learning for rapid age estimation of archaeological features identified with lidar at Angkor. Scientific reports 131: 17913.
Chevance, J.-B., D. Evans, N. Hofer, S. Sakhoeun and R. Chhean 2019. Mahendraparvata: an early Angkorperiod capital defined through airborne laser scanning at Phnom Kulen. Antiquity 93: 1303-1321.
Cody, T.R. and S.L. Anderson 2021. LiDAR predictive modeling of Pacific Northwest mound sites: a study of Willamette Valley Kalapuya Mounds, Oregon (USA). Journal of Archaeological Science, Reports 38: 103008.
Cohen, A., S. Klassen and D. Evans 2020. Ethics in archaeological lidar. Journal of Computer Applications in Archaeology 3: 76-91. DJI 2023. DJI L1 Operation Guidebook, v. 1.2. Shenzhen: DJI Technology Co.
Eisenbeiss, H., M. Sauerbier, L. Zhang and A. Gruen 2005. Mit dem Modellhelikopter über Pinchango Alto. Geomatik Schweiz 9: 510-515.
Eisenbeiss, H. and L. Zhang 2006. Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36: 90-96.
Ekaso, D., F. Nex and N. Kerle 2020. Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-spatial information science 23: 165-181.
Evans, D.H. 2016. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. Journal of Archaeological Science 74: 164-175.
Evans, D.H., R.J. Fletcher, C. Pottier, J-P. Chevance, D. Soutif, B.S. Tan, S. Im, D. Ea, T. Tin, S. Kim, C. Cromarty, S. De Greef, K. Hanus, P. Bâty, R. Kuszinger, I. Shimoda and G. Boornazian 2013. Uncovering archaeological landscapes at Angkor using lidar. PNAS 110: 12595-12600.
Fontana, G. 2022. Italy’s hidden hillforts: a largescale lidar-based mapping of Samnium. Journal of Field Archaeology 47: 245-261.
Fontana, G. 2025. Issues of sampling and representativeness in large-scale LiDAR-derived archaeological surveys in Mediterranean contexts. Archaeological Prospection 32: 103-117.
Frachetti, M.D., J. Berner, X. Liu, E.R. Henry, F. Maksudov and T. Ju 2024. Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia. Nature 634: 1118-1124.
Garrison, T.G., A.E. Thompson, S. Krause, S. Eshleman, J.C. Fernandez-Diaz, J.D. Baldwin and R. Cambranes 2023. Assessing the lidar revolution in the Maya lowlands: A geographic approach to understanding feature classification accuracy. Progress in Physical Geography: Earth and Environment 47: 270-292.
Georgiou, A. 2024. New Silk Road survey reveals hundreds of medieval structures. Newsweek, 23 October. Available at: https://www.newsweek. com/archaeologists-reveal-hundreds-medievalstructures- famous-silk-road-1973783
Gustavsson, H-O. 2022. Laserskanning rapport Grenland Vestfold 10 pkt 2022. Unpublished report, Oslo: Terratec.
Guyot, A., M. Lennon, T. Lorho and L. Hubert-Moy 2021. combined detection and segmentation of archeological structures from LiDAR data using a deep learning approach. Journal of Computer Applications in Archaeology 4: 1-19.
Hale, J.W.C., D.S. Davis and M.C. Sanger 2023. Evaluating the archaeological efficacy of bathymetric LiDAR across oceanographic contexts: a case study from Apalachee Bay, Florida. Heritage 6: 928-945.
Handwerk, B. 2022. Lost Cities of the Amazon Discovered from the Air. Smithsonian Magazine, 25 May. Available at: https://www.smithsonianmag. com/science-nature/lost-cities-of-the-amazondiscovered-from-the-air-180980142/.
Hill, A.C. 2019. Economical drone mapping for archaeology: comparisons of efficiency and accuracy. Journal of Archaeological Science, Reports 24: 80-91.
Hill, A.C., F. Limp, J. Casana, E.J. Laugier and M. Williamson 2019. A new era in spatial data recording: low-cost GNSS. Advances in Archaeological Practice 7: 169-177.
Julge, K., A. Ellmann and A. Gruno 2014. Performance analysis of freeware filtering algorithms for determining ground surface from airborne laser scanning data. Journal of Applied Remote Sensing 8(1): 085098.
Kartverket 2017. Posisjonstjenester i sanntid: referansestasjoner og tjenester. Oslo: Statens kartverk.
Kersten, T., J. Wolf and M. Lindstaedt 2022. Investigations into the accuracy of the UAV system DJI Matrice 300 RTK with the sensors Zenmuse P1 and L1 in the Hamburg test field, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43: 339-346.
Khan, S., L. Aragão and J. Iriarte 2017. A UAV–lidar system to map Amazonian rainforest and its ancient landscape transformations. International Journal of Remote Sensing 38: 2313-2330.
Kokalj, Ž. and R. Hesse 2017. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Ljubljana: Založba ZRC.
Kokalj, Ž. and M. Somrak 2019. Why Not a Single Image? Remote Sensing 11(747): 1-26.
Letard, M., D. Lague, A. Le Guennec, S. Lefèvre, B. Feldmann, P. Leroy, D. Girardeau-Montaut and T. Corpetti 2024. 3DMASC: accessible, explainable 3D point clouds classification. Application to bi-spectral topo-bathymetric lidar data. ISPRS Journal of Photogrammetry and Remote Sensing 207: 175-197.
Levitan, R., E.I. Levine, D. Athanasoulis, I. Legaki, H.R. Indgjerd, E.R. Campbell, J. Vanden Broeck- Parant, J. Paga, V. Anevlavi, T. Jakobitsch and F. Liard forthcoming. An Interdisciplinary Workflow for the Comprehensive Study of Ancient Quarried Landscapes. Antiquity.
McCoy, M.D., J. Casana, A.C. Hill, E.J. Laugier, M.A. Mulrooney and T.N. Ladefoged 2021. Unpiloted Aerial Vehicle Acquired Lidar for Mapping Monumental Architecture. Advances in Archaeological Practice 9: 160-174.
Murtha, T.M., E.N. Broadbent, C. Golden, A. Scherer, W. Schroder, B. Wilkinson and A.A. Zambrano 2019. Drone-mounted lidar survey of Maya settlement and landscape. Latin American Antiquity 30: 630-636.
Nesbakken, A. and O. Risbøl 2014. The burial cairns at Mølen – Remote sensing used for change detection in a protected site. Kart og Plan 74: 134- 149.
Norstedt, G., A.L. Axelsson, H. Laudon and L. Östlund 2020. Detecting cultural remains in boreal forests in Sweden using airborne laser scanning data of different resolutions. Journal of Field Archaeology 45: 16-28.
Podobnikar, T. and A. Vrečko 2012. Digital elevation model from the best results of different filtering of a LiDAR point cloud. Transactions in GIS 16: 603- 617.
Prümers, H., C.J. Betancourt, J. Iriarte, M. Robinson and M. Schaich 2022. Lidar reveals pre-hispanic low-density urbanism in the Bolivian Amazon. Nature 606(7913): 325-328.
Rannard, G. 2024. Lost Mayan city found in Mexico jungle by accident. BBC News. 29 Oct. Available at: https://www.bbc.co.uk/news/articles/ crmznzkly3go
Risbøl, O. and L. Gustavsen 2016. Bruk av luftbåren laserskanning (lidar) i arkeologien. Oslo: Riksantikvaren.
Risbøl, O. and L. Gustavsen 2018. LiDAR from drones employed for mapping archaeology: potential, conference papers benefits and challenges. Archaeological Prospection 25: 329-338.
Sapirstein, P. and S. Murray 2017. Establishing best practices for photogrammetric recording during archaeological fieldwork. Journal of Field Archaeology 42: 337-350.
Schuetz, M. 2016. Potree: Rendering large point clouds in web browsers. Unpublished dissertation, Vienna University of Technology.
Solli, P. 2008. Rapport laserskanning gravhauger Mølen i Larvik. Unpublished report, Oslo: Terratec.
Štular, B. and E. Lozić 2020. Comparison of filters for archaeology-specific ground extraction from airborne LiDAR point clouds. Remote Sensing. 12(18): 3025.
Štular, B., E. Lozić and S. Eichert 2021. Airborne LiDAR-derived digital elevation model for archaeology. Remote Sensing 13(9): 1855.
Tapete, D., A. Traviglia, E. Delpozzo and F. Cigna 2021. Regional-scale systematic mapping of archaeological mounds and detection of looting using COSMO-SkyMed high resolution DEM and satellite imagery. Remote Sensing 13(16): 3106.
Torsnes, A. 2017. Laserskanning for nasjonal detaljert høydemodell NDH Larvik 5 pkt 2017. Unpublished report, Oslo: Terratec.
Verschoof-van der Vaart, W.B., K. Lambers, W. Kowalczyk and Q.P. Bourgeois 2020. Combining deep learning and location-based ranking for large-scale archaeological prospection of LiDAR data from the Netherlands. ISPRS International Journal of Geo-Information 9(5): 293.
Vinci, G., F. Vanzani, A. Fontana and S. Campana, S. 2024. Lidar applications in archaeology: a systematic review. Archaeological Prospection 32: 82-101.
Zakšek, K., K. Oštir and Ž. Kokalj 2011. Sky-view factor as a relief visualization technique. Remote Sensing 3: 398-415.