The polymorphism of archaeological GIS. Unfolding the archaeological dimensions of GIS
Abstract
Having travelled through more than 30 years on the chariot of GIS, archaeology has benefited significantly from its tools and functionalities, trying to identify its matching with it on both a theoretical and practical level. Independent of the applications that have been carried out, micro or macro, 2D, 3D, 4D, geostatistical or descriptive, locational, and predictive analyses or monitoring, GIS has unfolded new dynamics in archaeological research, moving away from simple mapping, visualization and geotagging to address challenging tasks of analysis that combined diverse geographic, temporal, environmental, climatic, and cultural datasets. It has been an expected evolution as the science of Geoinformatics has been accelerated through the recent developments of smart sensors and imaging technologies from space, air, land and underwater, the fusion of different datasets, the exponential increase of data that led to the rise of Big Data, and the advancement of processing algorithms though ML and AI techniques. We are experiencing the impact of the new generation of GIS in archaeology. But is the archeological community ready for the next step?
References
Alexakis, D., A. Sarris, Th. Astaras and K. Albanakis 2011. Integrated GIS, remote sensing and geomorphologic approaches for the reconstruction of the landscape habitation of Thessaly during the neolithic period, Journal of Archaeological Science 38.1: 89–100 https://doi.org/10.1016/j.jas.2010.08.013.
Baddeley, A., E. Rubak and R. Turner 2016. Spatial point patterns: methodology and applications with R. Champan & Hall/CRC Interdisciplinary Statistics Series. Boca Raton: London: New York: CRC Press, Taylor & Francis Group.
Baur, N. 2019. Linearity vs. circularity? On some common misconceptions on the differences in the research process in qualitative and quantitative research. Frontiers in Education 4.53: 1–15 https://doi.org/10.3389/feduc.2019.00053.
Berganzo-Besga, I., H. Orengo, F. Lumbreras, M. Carrero-Pazos, J. Fonte, and B. Vilas- Estévez 2021. Hybrid MSRM-based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning algorithm detects near 10k Archaeological Tumuli in North-Western Iberia. Remote Sensing 13.20: 4181. https://doi. org/10.3390/rs13204181.
Bodenhamer, D.J., J. Corrigan and M.T. Harris (eds) 2015. Deep maps and Spatial narratives. Bloomington: Indiana University Press. https://doi.org/10.2307/j. ctt1zxxzr2.
Bodenhamer, D.J. and J. Corrigan 2022. Making Deep Maps: Foundations, approaches, and methods. Abingdon: Routledge.
Breeze, P., N. Drake, H. Groucutt, A. Parton, R. Jennings, T. White, L. Clark-Balzan, C. Shipton, E. Scerri, C. Stimpson, R. Crassard, Y. Hilbert, A. Alsharekh, A. Al-Omari and M. Petraglia 2015. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quaternary International 382: 98–119. https://doi. org/10.1016/j.quaint.2015.01.022 .
Caspari, G. and P. Crespo 2019. Convolutional neural networks for archaeological site detection – finding ‘princely’ tombs. Journal of Archaeological Science 110: 104998. https://doi.org/10.1016/j. jas.2019.104998.
Cloke, C. and E. Athanassopoulos 2020. Late Antique and Medieval landscapes of the Nemea Valley, Southern Greece. Journal of Greek Archaeology 5: 406–425. https://doi. org/10.32028/9781789697926-15
Comer, J., D. Corner, I. Dumitru, C. Priebe, J. and Patsolic 2023. Sampling methods for archaeological predictive modeling: Spatial autocorrelation and model performance, Journal of Archaeological Science: Reports, 48: 103824. https://doi.org/10.1016/j.jasrep.2022.103824.
Cooper, A. and C. Green 2016. Embracing the complexities of ‘Big Data’ in Archaeology: the case of the English landscape and identities project. Journal of Archaeological Method and Theory 23/1: 271–304. https://doi.org/10.1007/ s10816-015- 9240-4.
Dai Prà, E. and N. Gabellieri 2021. Mapping the Grand Tour travel writings: a GIS-Based inventorying and spatial analysis for Digital Humanities in Trentino-Alto Adige, Italy (XVI-XIX c.). Literary Geographies 7.2: 251–274.
Déderix S. 2019. Patterns of visibility, intervisibility and invisibility at Bronze Age Apesokari (Crete). Open Archaeology 5: 187–203 https://doi. org/10.1515/opar-2019-0014.
Dell’unto, N. and G. Landeschi 2022. Archaeological 3D GIS. New York: Routledge.
De Soto, P. 2010. Anàlisi de la xarxa de comunicacions i del transport a la Catalunya Romana: estudis de distribució i mobilitat. Barcelona: Universitat Autònoma de Barcelona. http://hdl.handle. net/10803/5560.
Dieckmann, U. (ed.) 2021. Mapping the Unmappable?: Cartographic explorations with indigenous peoples in Africa (Sozial- und Kulturgeographie 39). Bielefeld: transcript Verlag, https://doi. org/10.1515/9783839452417
Donaldson, C., I.G. and J. Taylor 2017. Locating the beautiful, picturesque, sublime and majestic: spatially analysing the application of aesthetic terminology in descriptions of the English lake district. Journal of Historical Geography 56: 43–60 https://doi.org/10.1016/j.jhg.2017.01.006.
Edward, L.A. 2010. Turning toward place, space, and time, in J.D. Bodenhamer, J. Corrigan and M.T. Harris (eds) The Spatial Humanities: GIS and the Future of Humanities Scholarship: 1–13. Bloomington: Indiana University Press.
Erny, G. 2023. Statistical approaches to small site diversity: new insights from Cretan legacy survey data. Journal of Mediterranean Archaeology 36.1: 71– 101 https://doi.org/10.1558/jma.26678.
Eve, S. 2017. The embodied GIS. Using mixed reality to explore multi-sensory archaeological landscapes. Internet Archaeology 44. https://doi. org/10.11141/ia.44.3.
Fábrega Álvarez, P. and C. Parcero Oubiña 2007. Proposals for an archaeological analysis of pathways and movement. Archeologia E Calcolatori Xviii: 121–140.
Giatsiatsou, P. 2024. Predictive modelling in underwater archaeology. A case based on Mesolithic coastal settlements in Denmark. Acta Archaeologica 94.1, 3–11. https://doi.org/10.1163/16000390- 09401044.
González-Tennant, E. 2016. Recent directions and future developments in Geographic Information Systems for historical archaeology. Historical Archaeology 50.3: 24–49.
Guyot, A., L. Hubert-Moy, and T. Lorho 2018. Detecting Neolithic burial mounds from LiDAR-derived elevation Data using a multi-scale approach and machine learning techniques. Remote Sensing 10.2: 225. https://doi.org/10.3390/rs10020225.
Harpster, M. 2015. Using maritime inhabitation patterns in the Mediterranean Sea to protect and manage maritime cultural heritage, Proceedings of the 1st International Conference on Metrology for Archaeology: 455–460. Benevento.
Harpster, M. and H. Chapman 2019. Using polygons to model maritime movement in antiquity. Journal of Archaeological Science 111: 10497–10516 https://doi.org/10.1016/j.jas.2019.104997.
Harris, T. 2015. Deep Geography — Deep Mapping: spatial storytelling and a sense of place, in D. Bodenhamer, J. Corrigan and T. Harris (eds) Deep Maps and Spatial Narratives 33. Bloomington: Indiana University Press. 28–53.
Hey, T., S. Tansley and K. Tolle (eds) 2009. The fourth paradigm: Data-Intensive scientific discovery. Redmond, Washington: Microsoft Research.
Huvila, I. 2022. Improving the usefulness of research data with better paradata. Open Information Science 6: 28–48 https://doi.org/10.1515/opis- 2022-0129.
Jarriel, K. 2018. Across the surface of the sea: Maritime interaction in the Cycladic Early Bronze Age. Journal of Mediterranean Archaeology 31.1: 52–76 https://doi.org/10.1558/jma.36810
Jarriel, K. 2021. Climate disaster and the resilience of local maritime networks: Two examples from the Aegean Bronze Age, Quaternary International 597: 118–130 https://doi.org/10.1016/j.quaint.2020.08.010.
Jiang, B., and C. Claramunt 2002. Integration of Space Syntax into GIS: New perspectives for urban morphology. Transactions in GIS 6.3: 295– 309. https://doi.org/10.1111/1467-9671.00112.
Jones, J. and N. Curtis (eds) 2022. Four Rivers: Deep Maps. Perth: University of Western Australia Press.
Katsianis, M., T. Kalayci and A. Sarris 2022. Bridging digital approaches and legacy in archaeology. Digital 2022 2.4: 538–545. https:// doi.org/10.3390/digital2040029.
Kealy, S., J. Louys and S. O’Connor 2017. Reconstructing palaeogeography and inter- island visibility in the Wallacean Archipelago during the likely period of Sahul colonization, 65–45 000 years ago. Archaeological Prospection 24: 259–272 https://doi.org/10.1002/arp.1570.
Kempf, M. and G. Günther 2023. Point pattern and spatial analyses using archaeological and environmental data – A case study from the Neolithic Carpathian Basin. Journal of Archaeological Science: Reports 47: 103747 https:// doi.org/10.1016/j.jasrep.2022.103747.
Knodell, A.R. 2021. Societies in transition in Early Greece: An archaeological history. Berkeley: University of California Press.
Küçükdemirci, M. and A. Sarris 2020. Deep learning based automated analysis of archaeo‐ geophysical images. Archaeological Prospection 27.2: 107–118. https://doi.org/10.1002/arp.1763.
Küçükdemirci, M. and A. Sarris 2022. GPR data processing and interpretation based on artificial intelligence approaches: future perspectives for archaeological prospection. Remote Sensing 14.14: 3377. https://doi.org/10.3390/rs14143377
Leidwanger, J. 2013. Modeling distance with time in ancient Mediterranean seafaring: a GIS application for the interpretation of maritime connectivity. Journal of Archaeological Science 40.8: 3302–3308 https://doi.org/10.1016/j. jas.2013.03.016.
Leidwanger, J. 2020. Exploring shipwreck data in J. Leidwanger (ed) Roman Seas: A maritime archaeology of Eastern Mediterranean economies: 110–153. New York: Oxford University Press.
Lewis, C. 1015. Archaeological excavation and Deep Mapping in historical rural communities. Humanities 4: 393–417. https://doi.org/ doi:10.3390/h4030393.
Maddison, S. and S. Schmidt 2020. Percolation Analysis – Archaeological applications at widely different spatial scales, Journal of Computer Applications in Archaeology 3.1: 269–287. https://doi.org/10.5334/jcaa.54.
Magnini, L. and C. Bettineschi 2021. Object-based predictive modeling (OBPM) for Archaeology: finding control places in mountainous environments. Remote Sensing 13: 1197. https://doi.org/10.3390/rs13061197.
Manzetti, C. and A. Sarris 2021. A methodological approach for intra – site analysis of prehistoric settlements. Studies in Digital Heritage 5: 88–106. https://doi.org/10.14434/sdh.v5i2.32980.
Mills, B. 2017. Social Network Analysis in Archaeology, Annual Review of Anthropology 46: 379–397. https://doi.org/10.1146/annurev- anthro-102116-041423.
Morrison, K., E. Hammer, O. Boles, M. Madella, N. Whitehouse, M-J. Gaillard, J. Bates, M. Linden, S. Merlo, A. Yao, L. Popova, A. Hill, F. Antolin, A. Bauer, S. Biagetti, R. Bishop, P. Buckland, P. Cruz, D. Dreslerová, G. Dusseldorp, E. Ellis, D. Filipovic, T. Foster, M. Hannaford, S. Harrison, M. Hazarika, H. Herold, J. Hilpert, J. Kaplan, A. Kay, K. Goldewijk, J. Kolář, E. Kyazike, J. Laabs, C. Lancelotti, P. Lane, D. Lawrence, K. Lewis, U. Lombardo, G. Lucarini, M. Arroyo-Kalin, R. Marchant, F. Mayle, M. McClatchie, M. McLeester, S. Mooney, M. Hoyo, V. Navarrete, E. Ndiema, E. Neves, M. Nowak, W. Out, C. Petrie, L. Phelps, Z. Pinke, S. Rostain, T. Russell, A. Sluyter, A. Styring, E. Tamanaha, E. Thomas, S. Veerasamy, L. Welton and M. Zanon 2021. Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE 16/4: e0246662. https://doi.org/10.1371/journal.pone.0246662.
Murphy, D., S. Shelley, A. Foteinou, J. Brereton and H. Daffern 2017. Acoustic heritage and audio creativity: the creative application of sound in the representation, understanding and experience of past environments, Internet Archaeology 44. https://doi.org/10.11141/ia.44.12.
Noviello, M., B. Cafarelli, C. Calculli, A. Sarris and P. Mairota 2018. Investigating the distribution of archaeological sites: Multiparametric vs probability models and potentials for remote sensing data, Applied Geography 95: 34–44 https:// doi.org/10.1016/j.apgeog.2018.04.005.
Oliveira, S., K. Nägele, S. Carlhoff, I. Pugach, T. Koesbardiati, A. Hübner, M. Meyer, A.A. Oktaviana, M. Takenaka, C. Katagiri, C., D.B. Murti, R.S. Putri, Mahirta, T. Higham, C.F.W. Higham, S. O’Connor, S.Hawkins, R. Kinasaton, P. Bellwood, R. Ono, A. Powell, J. Krause, C. Posth and M. Stoneking 2022. Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nature Ecology & Evolution 6: 1024–1034 https://doi.org/10.1038/ s41559-022-01775-2.
Orengo, H.A., F.C. Conesa, A. Garcia-Molsosa. A. Lobo, A. Green, M. Madella and C. Petrie 2020. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proceedings of the National Academy of Sciences 117.31: 18240–18250. https://doi.org/10.1073/pnas.2005583117.
Phillips, S., M. Dudík and R. Schapire 2004. A maximum entropy approach to species distribution modeling, in C.E. Brodley (ed.) ICML ‘04: Proceedings of the twenty-first international conference on Machine learning Banff, Alberta, Canada: ACM Press. https://doi. org/10.1145/1015330.1015412.
Pollard, D. 2023. From the Ground Up: Modelling agricultural landscapes in Early Iron Age East Crete Using legacy survey Data and GIS, Journal of Mediterranean Archaeology 36.1: 42–70 https://doi.org/10.1558/jma.26676.
Premo, L.S. 2004. Local spatial autocorrelation statistics quantify multi-scale patterns in distributional data: an example from the Maya Lowlands. Journal of Archaeological Science 31.7: 855–866. https://doi.org/10.1016/j. jas.2003.12.002.
Primeau, K.E. and D.E. Witt 2018. Soundscapes in the past: Investigating sound at the landscape level. Journal of Archaeological Science: Reports 19: 875–885, https://doi.org/10.1016/j. jasrep.2017.05.044.
Reeder, L., T. Rickand and J. Erlandson 2012. Our disappearing past: a GIS analysis of the vulnerability of coastal archaeological resources in California’s Santa Barbara Channel region. Archaeology and Coastal Conservation 16/2: 187–197. https://doi. org/10.1007/s11852-010-0131-2.
Richards-Rissetto, H., K.E. Primeau, D.E. Witt, G. Goodwin 2023. Multisensory experiences in archaeological landscapes—sound, vision, and movement in GIS and Virtual Reality, in G. Landeschi and E. Betts (eds) Capturing the Senses. Quantitative Methods in the Humanities and Social Sciences: 179–210. Cham: Springer. https://doi. org/10.1007/978-3-031-23133-9_9.
Romanowska, I., C. Wren and S. Crabtree 2021. Agent-based modeling for archaeology: simulating the complexity of societies. Santa Fe: The Santa Fe Institute Press. https://doi.org/10.37911/9781947864382.
Safadi, C. and F. Sturt 2019. The warped sea of sailing: Maritime topographies of space and time for the Bronze Age eastern Mediterranean. Journal of Archaeological Science 109: 1–15 https://doi.org/10.1016/j.jas.2019.01.001.
Sarris, A. and S. Dederix 2014. GIS for Archaeology & cultural resources management in Greece. Quo Vadis?, in N. Zacharias (ed.) Proceedings of the 3rd Conference Arch_RNT on Archaeological Research and New Technologies: 7–20. Kalamata: Publications of the University of Peloponnese.
Sarris, I-M., D. Chalkiadakis, and A. Sarris 2022. Investigating automatic segmentation and classification of archaeological magnetic features through machine learning techniques. 27th International Conference on Cultural Heritage and New Technologies, Propylaeum 377. Heidelberg.
Siart, C., B. Eitel and D. Panagiotopoulos 2008. Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete. Journal of Archaeological Science 35/11: 2918–2926 https:// doi.org/10.1016/j.jas.2008.06.006.
Terrell, J.E. 2010. The ‘sleeping giant’ hypothesis and New Guinea’s place in the prehistory of Greater Near Oceania. World Archaeology 36.4: 601–609 https://doi.org/10.1080/0043824042000303782.
Tobler, W. 1993. Three presentations on geographical analysis and modeling: Non-isotropic geographic modeling speculations on the geometry of geography global spatial analysis. Technical Report 93.1. National center for geographic information and analysis, Santa Barbara: University of California.
Tsou, M-H. 2018. The future development of GISystems, GIScience, and GIServices, in B. Huang (ed.) Comprehensive Geographic Information Systems 1: 1–4. Oxford: Elsevier.
Ullah, I.I., Z. Clow and J. Meling 2023. Paradigm or practice? Situating GIS in contemporary archaeological method and theory. Journal of Archaeological Method Theory. https://doi. org/10.1007/s10816-023-09638-1
Verhagen, P. 2005. Quantifying the Qualified: the use of multicriteria methods and Bayesian statistics for the development of archaeological predictive models, in M. Mehrer and K.L. Wescott (eds) GIS and Archaeological Site Location Modeling: 191–216. CRC Press. https://doi. org/10.1201/9780203563359.
Verhagen, P. 2018. Spatial analysis in archaeology: moving into new territories, in C. Siart, M. Forbriger and O. Bubenzer (eds) Digital Geoarchaeology. Natural Science in Archaeology: 11– 25. Cham: Springer.
Verhagen, P., L. Nuninger and M.R. Groenhuijzen 2019. Modelling of pathways and movement networks in archaeology: an overview of current approaches, in P. Verhagen, J. Joyce and M.R. Groenhuijzen (eds) Finding the Limits of the Limes. Computational Social Sciences. Cham: Springer. https://doi.org/10.1007/978-3-030-04576-0_11.
Verhagen, P. and A. Sarris 2023. GIS-based spatial analysis and modelling, in P. Trapero Fernández and A. Carneiro (eds) GIS Applications in Roman Landscape and Territory (British Archaeological Reports. International Series S3139): 173–181. Oxford: Bar Publishing.
Verschoof-Van Der Vaart, W. and K. Lambers 2019. Learning to look at LiDAR: The Use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology 2.1: 31–40. https://journal.caa-international.org/ articles/10.5334/jcaa.32/.
Wang, Y, X. Shi and T. Oguchi 2023. Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China. ISPRS International Journal of Geo-Information 12/6:238. https://doi.org/10.3390/ijgi12060238.
Warren, R.E. 1990. Predictive modeling in archaeology: a primer, in K.M.S. Allen, S.W. Green and E.B.W. Zubrow (eds) Interpreting Space: GIS and Archaeology. Applications of Geographic Information Systems: 90–111. London: Taylor & Francis.
White, D.A. and S.B. Barber 2012. Geospatial modeling of pedestrian transportation networks: a case study from precolumbian Oaxaca, Mexico. Journal of Archaeological Sciences 39: 2684–2696. https://doi.org/10.1016/j.jas.2012.04.017.
Witt, D.E. and K.E Primeau 2019. Performance space, political theater, and audibility in downtown Chaco. Acoustics 1/1: 78–91. https://doi. org/10.3390/acoustics1010007.