

Rupelian Fossil Elasmobranch from Omani Thaytiniti Fauna Fill A Chronological Gap in The Elasmobranch Fossil Record of West Indian Ocean

Adnet Sylvain*, Cappetta Henri & Charpentier Vincent

ABSTRACT

In 1990's, French-Omani team first signalled in southern part of Dhofar, South Oman, several terrestrial vertebrates mixed with marine members in an Early Oligocene fossil assemblage. Even though most of these fossils have been reported and published by palaeontologists, fossil elasmobranchs (sharks and rays) have deserved little attention since this date. In this paper we describe and figurate the elasmobranch members recovered during the 90's fieldtrips at Thaytiniti and which includes several requiem sharks (*Carcharhinus perseus*; *Negaprion*, *Rhizoprionodon*), snaggletooth shark (*Hemipristis*, *Moerigaleus*), nurse and zebra shark (*Nebrius*, cf. *Stegostoma*); bamboo shark (*Chiloscyllium*), tiger shark (*Galeocerdo*); wedgefish and guitarfish (*Rhynchobatus*; *Rhinobatos*) and several stingrays (e.g. *Himantura*, ?*Taeniura*), cownose and eagle rays (*Rhinoptera*, *Aetobatus*). Together with the fossiliferous outcrops at Paali Nala, Pakistan, the Oman locality Thaytiniti fill the chronological gap in the fossil record of West Indian Ocean elasmobranch communities. Their resembling elasmobranch assemblages constitute an original and significant amount of new elements about the Late Paleogene tropical ichthyofauna living close to estuaries and support that the settlement of the modern Indian Ocean fish fauna occur during Early Oligocene to Early Miocene period as these sites interestingly mostly present members known in present Indian Ocean.

KEYWORDS: Oligocene, Elasmobranches, Indo-Pacific

أحفورة الروبيلي من حيوانات موقع ثايتينيتي العماني تملأ فجوة زمنية في السجل الأحفوري للأسماء الصفيحية الخياشيم الفضروفية لغرب المحيط الهندي

أدنست سيفان*, كابيتا هنري، وشاربنتير فنسنت

الملخص:

في تسعينيات القرن الماضي، أشار فريق فرنسي عماني لأول مرة في الجزء الجنوبي من ظفار بجنوب سلطنة عمان، إلى وجود العديد من الفقاريات الأرضية الممزوجة بأعضاء بحرية في تجمع أحفوري من فترة الأوليوجوسيني المبكرة، في حين تم الإبلاغ عن معظم هذه الأحفوريات ونشرها من قبل علماء الأحفوريات، إلا أن أحفوريات الأسماك صفيحية الخياشيم الفضروفية (أسماك القرش والشفنين) لم تجد سوى القليل من الاهتمام حتى الآن. تقوم في هذه الورقة بوصف وتصوير أعضاء هذه الأحفوريات المكتشفة خلال الرحلات الميدانية في التسعينيات من القرن الماضي في قرية ثايتينيتي (بالقرب من منطقة عيدهم في أقصى جنوب غرب محافظة ظفار)، والتي تتضمن العديد من أسماك القرش القداس، والقرش ذو الأسنان المسننة، والقرش الحاضن، وقرش الحمار الوحشي، وقرش الخيزران، وقرش النمر، وقيثارات البحر، وسمك السلفون، والعديد من سمك الشفنين للأسماع، والشفنين خطم البقرة، والشفنين العقابي. جنبا إلى جنب مع التكشافات الأحفورية في بالي نالا بباكستان، يملأ موقع ثايتينيتي في سلطنة عمان الفجوة الزمنية في السجل الأحفوري لمجموعات الأسماك صفيحية الخياشيم الفضروفية من غرب المحيط الهندي. تشكل مجموعاتها المشابهة من الأسماك صفيحية الخياشيم الفضروفية كمية أصلية ومهمة من العناصر الجديدة حول الإكتيوفونا (مجموع أنواع الأسماك الأصلية الخاصة بالمنطقة) الاستوائية من العصر الباليوجيني المتأخر التي تعيش بالقرب من مصبات الأنهار وتدعى استيطان الأسماك الحديثة في المحيط الهندي الذي حدث خلال فترة الأوليوجوسين المبكرة إلى فترة الميوسين المبكرة حيث أن هذه المواقع تضم في الغالب وبشكل متزايد للاهتمام أعضاء معروفيين في المحيط الهندي الحالي.

الكلمات المفتاحية: الأوليوجوسين، صفيحية الخياشيم الفضروفية، المحيط الهندي الهايدي.

INTRODUCTION

The Oligocene is a critical long period for recording marine fishes as we face large chronological gaps in marine deposition after rapid sea level decline at the Eocene-Oligocene transition (Hansen et al. 2013; Miller et al., 2005; Zachos et al., 2001). Moreover, the dynamics of the Elasmobranchs that frequented the sub-basin of the Eastern Tethys north of the Arabian Plate are imperfectly understood during the Late Paleogene. Although there are some records of Oligocene elasmobranch assemblages in Paratethys, Western Tethys and Atlantic (e.g. Russian, Europe, North America), few are known easterly (Case and West, 1991; Adnet et al., 2007, Murray et al. 2004, 2014, Van Vliet et al., 2017) before the land bridge connection induced by the collision of the African-Arabian plate with the Eurasian plate at the late early Miocene (Harzhauser et al., 2007). The discovery of new Early Oligocene material of Elasmobranch is rather rare and an increasing knowledge on these times thus appears necessary to document the evolutionary history of fish and particularly elasmobranchs in marine oceans. There is no doubt concerning age of the Thaytiniti and Taqah Elasmobranchs because there is general agreement that the famous mammal-bearing deposits of the Ashawq Formation in the Thaytiniti area (approximatively 100km² including the formal Thaytiniti site excavated by Thomas et al. (1988, 1989) and other close localities (Al-Kindi et al., 2017) and of Taqah are Rupelian, Early Oligocene (Thomas, Roger, and Al Sulaimani, 1991a, Thomas et al. 1999, Seiffert, 2006, Seiffert et al. 2012). Indeed, these assemblages constitute original and significant amount of new elements to support the settlement of the Indian Ocean fish fauna. We can thus feature the Oman elasmobranch fauna in the Early Oligocene and discuss resemblance and differences yet existing in the sub-contemporary and geographically close locality of Paali Nala, Pakistan at this time period.

SYSTEMATICS OF ELASMOBRANCHS

Cappetta in Thomas, et al. (1989) first reported the preliminary listing of elasmobranchs from Thaytiniti collected in 1987 from excavation of

200kg of the fossiliferous deposits having delivered the teeth focused in this work. It includes *Hemipristis cf. serra*; *Hemipristis aff. curvatus*; *Negaprion* sp.; *Galeocerdo aduncus*; *Rhizoprionodon* / *Sphyrna*; *Carcharhinus cf. amboinensis*; *Nebrius* sp. *Chiloscyllium* sp.; *Rhynchobatus aff. pristinus*; *Rhinobatos* sp.; *Dasyatis* spp. 1 et 2; *Rhinoptera* sp. and *Aetobatus aff. arcuatus*. Thomas et al. (1991b) secondary analysed fossils excavated from dozens of tons of sediments from Taqah. They reported also the presence of Elasmobranch remains that consist of some shark teeth belonging to *Negaprion*, *Carcharhinus*, *Galeocerdo* and rays teeth (e.g. *Dasyatidae*, *Rhinobatidae* and *Myliobatidae*). Adnet et al. (2007) partially revised some of these and synonymised the *Carcharhinus cf. amboinensis* from Thaytiniti with the coeval fossil species *Carcharhinus perseus* recovered at Paali Nala (Baluchistan, Pakistan). These authors also discussed about that some *Dasyatis* from Thaytiniti preferentially belonged to *Himantura* and that the presence of a weak serrated mesial cutting edge suggests a transitional form between *H. curvatus* and *H. serra* justifying the attribution in confer to *H. serra* rather than *H. serra*. Restudying the material collected during the original fieldtrip in 1987, we perform the updating listing with figurations of elasmobranches from Thaytiniti that now consist of: *Hemipristis cf. serra* (rare); ?*Moerigaleus* sp. (rare), *Negaprion* sp. (frequent); *Galeocerdo aduncus* (rare); *Rhizoprionodon* (common); *Carcharhinus perseus* (common); *Nebrius* sp. (rare); ?*Stegostoma* sp. (rare); *Chiloscyllium* sp. (common); *Rhynchobatus aff. pristinus* (common); “*Rhinobatos*” sp. (common); *Himantura* sp. (frequent); ?*Taeniura* sp. (common), *Dasyatid* indet (rare) *Rhinoptera* sp. (rare); *Aetobatus aff. arcuatus* (rare). It appears that Taqah fauna is quite similar with occurrence of dominance of *Himantura* sp. and ?*Taeniura* sp. and unsignalled presence of *Rhynchobatus aff. pristinus*

All the Elasmobranch specimens from historical Thaytiniti locality recovered in 1987 fieldtrips and presently figured in this work are now housed at the Department of Archaeology, Ministry of Heritage and Tourism of the Sultanate of Oman (reference DA plus catalogue number) from DA53445 to DA53457.

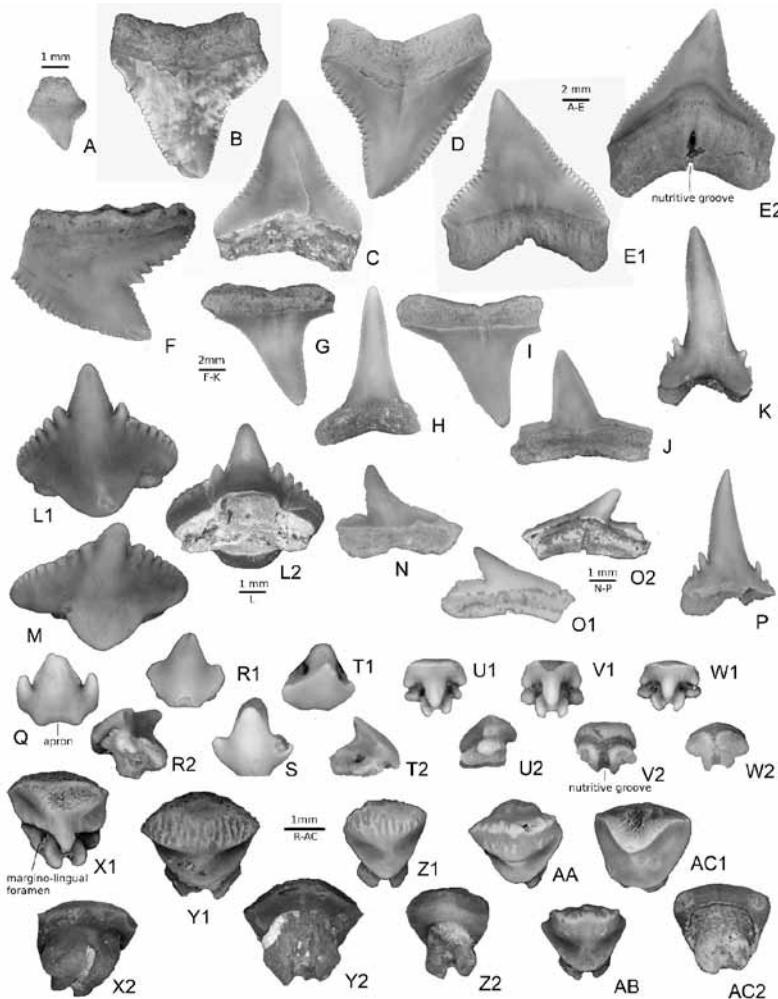


Figure 1: *Thaytiniti* elasmobranch teeth recovered in 1987. A-E *Carcharhinus perseus*: A(DA53445/1) symphyseal upper tooth (labial view), B(DA53445/2) anterior upper tooth (labial view), C(DA53445/3) antero-lateral upper tooth (labial view), D(DA53445/4) lateral upper tooth (labial view), E(DA53445/5) lateral upper tooth, E1(labial view), E2(lingual view); F. *Galeocerdo aduncus* (DA53446): lateral tooth (labial view) ; G-J. *Carcharhinus* sp or *Negaprion* sp.: G (DA53447/1) antero-lateral upper tooth, H (DA53447/2) lower anterior tooth, I (DA53447/3) antero-lateral upper tooth, J DA53447/4) lateral lower tooth (labial views); K. *Hemipristis* cf. *serra* (DA53448) anterior upper tooth (labial view); L-M *Nebrius* sp.: L (DA53449/1) anterior tooth L1(labial view), L2 (lingual view), M (DA53449/2) lateral tooth (labial view); N-O. *Rhizoprionodon* sp.: N (DA53450/1) anterior tooth, O(DA53450/2) lateral tooth (labial views); P. ?*Moerigaleus* sp. (DA53451) lower anterior tooth (labial view); Q. ?*Stegostoma* sp. (DA53452) anterior tooth (labial view); R-T. *Chiloscyllium* sp : R(DA53453/1) anterior tooth R1(labial view), R2(semi profile), S(DA53453/2) anterior tooth (occlusal view), T(DA53453/3) lateral tooth T1(occlusal view),T2(profile) , U-W. *Rhinobatos* sp. :U(DA53454/1) anterior tooth U1(lingual view), U2(profile), V(DA53454/2) antero-lateral tooth V1 (lingual view),V2(labial view),W(DA53454/3) lateral tooth W1(lingual view),W2(basal view); X. *Rhynchosbatus* cf. *pristinus* (DA53454) lateral tooth X1(lingual view), X2(oblique labial view); Y-Z. *Himantura* sp. : Y(DA53455/1) lateral tooth Y1(lingual view),Y2(labial view), Z(DA53455/2) anterior tooth Z1(lingual view), Z2(labial view); AA-AB. . ?*Taeniuira* sp. : AA (DA53456/1), anterior tooth (oblique occlusal view), AB(DA53456/2), anterior tooth (lingual view) ; AC. *Dasyatidae* sp (DA53457), anterior tooth AC1 (lingual view), AC2 (basal view)

ORECTOLOBIFORMS**Ginglymostomatidae Gill, 1862***Nebrius* sp. (Figure 1L-M)

Figured material: anterior tooth (DA53449/1), lateral tooth (DA53449/2).

Description and Discussion: The anterior tooth crown (Figure 1L) has a high median cusp flanked by numerous mesial and distal cusplets that decrease in size towards the crown margins. The more lateral tooth (Figure 1M) has more cusplets on mesial side of cusp than on distal side, resulting in strong crown asymmetry. Prominent labial apron is present in anterior and lateral teeth, which is not bifid and uniformly rounded. Lingual crown face is smooth (Figure 1L2) and roots are unfortunately missing in both teeth. Anterior tooth morphology (Figure 1L) is quite different from those often referred in Eocene deposits (e.g. *Nebrius obliquus* (Leidy, 1877), *Nebrius thielensis* (Winkler, 1874) and *Nebrius blanckenhorni* (Stromer, 1903)) in having a higher, erected median principal cusp. *N. obliquus*, *N. thielensis* and *N. blanckenhorni* are very common carpet sharks recovered in the Eocene warm to tropical nearshores deposits worldwide (Underwood et al., 2011; Cappetta, 2012; Cappetta and Case, 2016; Ebersole, Cicimurri, and Stringer, 2019; Adnet et al., 2020; Samonds et al., 2019). Numerous observations based on more abundant material (Noubhani and Cappetta, 1997; Cappetta and Case, 2016; Ebersole, Cicimurri, and Stringer, 2019) often doubted about systematics validity of these three coeval Eocene species. Post Eocene reports of *Nebrius* are strangely scarcer, particularly during Oligocene period. They only concern those from Chattian of South Carolina (referred as *N. cf. serra*. Cicimurri and Knight 2009), of North Carolina (Müller 1999 according Cicimurri and Knight 2009) and some from Rupelian of France (Génault, 1993). Yabumoto and Uyeno (1994) and Cicimurri and Knight (2009) assigned some fossil *Ginglymostoma* teeth with numerous lateral cusplets (e.g. *G. delfortriei*, *G. serra*) to *Nebrius* even if other (Cappetta, 2012) consider that *Nebrius* teeth are first characterized by a moderately high and thick, distinctly asymmetrical crown with

an extremely developed apron passing beyond the basal plane of the root in mesial view, where apron in *Ginglymostoma* is shorter and sometimes bifid. Whatever the future of systematics debate, the Thaytiniti specimens are morphologically similar to those attributed to *Nebrius cf. serra* (Leidy, 1877) from Late Oligocene of USA (Cicimurri and Knight, 2009) as those from the late Middle Eocene of Tunisia (Adnet et al., 2020) reported as *Nebrius* sp. Rarity and fragmentary state of preservation of teeth does not allow a better attribution.

Stegostomatidae Gill, 1862*Cf. Stegostoma* sp. (Figure 1Q)

Figured material: anterior tooth (DA53452).

Description and Discussion: A unique fragmentary anterior tooth (figure 1Q) could be attributed to zebra shark *Stegostoma*. The crown is quite symmetrical and bears a broken main cusp which is flanked by a pair of lateral cusplets. The latter are strong, erected and well-individualized from the cusp. Both lateral cusplets are similarly sharply pointed and all of the cusps possess sharp cutting edges. Beneath the central cusp base, one can observe a moderate bifid apron on the crown margin as observable in living *S. fasciatum* (Herman, Hovestadt, and Hovestadt, 1992). Tooth partially resemble to the Middle-Late Eocene *Stegostoma tethysiensis* Adnet et al., 2020 but lateral cusplets seem lesser developed unless broken tooth belong to a lateral file.

Hemiscylliidae Gill, 1862*Chiloscyllium* sp. (Figure 1R-T)

Figured material: anterior tooth (DA53453/1), anterior tooth (DA53453/2), and lateral tooth (DA53453/3).

Description and Discussion: The rare teeth are small (less than 2 mm in length) and show a principal and symmetric cusp, large apron and a pair of well-developed shoulders often making minute hook-like denticles. With teeth symmetrical, possessing a convex labial face of crown, a straight cusp with small lateral shaped cusplets, these teeth belong preferentially to *Chiloscyllium* rather than

to *Hemiscyllum* according to Herman & Crochard (1977) and Herman, Hovestadt, and Hovestadt (1992). Until now; there were no post Eocene report of these Indo-Pacific bamboo sharks (Hemiscyllids, *Chiloscyllium*) if we exclude the dubious damaged crown of cf. *Chiloscyllium* from Neogene of Brazil (Aguilera et al., 2017). Teeth of this undescribed species clearly reminds that of living species (e.g. *Chiloscyllium punctatum* or *Chiloscyllium griseus*) and is probably conspecific with that recorded in Paali Nala (Pakistan) as Orectolobiformes indet. by Adnet et al. (2007).

CARCHARHINIFORMS

Carcharhinidae Jordan and Evermann, 1896

Carcharhinus perseus Adnet et al., 2007 (Figure 1A-E)

Figured material: symphyseal upper tooth (DA53445/1), anterior upper tooth (DA53445/2), antero-lateral upper tooth (DA53445/3), lateral upper tooth (DA53445/4), and lateral upper tooth (DA53445/5).

Description and Discussion: Specimens from Thaytiniti display size and morphological features very similar to those observable in the species *C. perseus* (Adnet et al., 2007), with a very limited dignathic heterodonty, a reduced nutritive groove (in lingual view Figure 1E2) and a strong labio-lingual compression of teeth. *C. perseus* was originally described from the Rupelian of Paali Nala, Baluchistan, Pakistan (Adnet et al., 2007) and is also known from the Rupelian of Egypt (Jebel Qatrani, Quarries A and E; Murray et al., 2014; Qattara Depression: Van Vliet et al., 2017) and from the Eocene/Oligocene boundary of Tunisia (Sweydan et al. 2019). Previously signalled as present in Thaytiniti (Adnet et al., 2007: in text), Figures 1A-E definitively testify occurrence of the Pakistani species. All these reports testify that the tropical *Carcharhinus perseus* is clearly distinguishable and extremely modern compared to contemporaneous species of *Carcharhinus* from higher latitude localities (*C. elongatus* or *C. gibbosi*). The last ones having upper teeth with mainly erected central cusp with smoothed cutting

edge and slightly to heavy serrated shoulders (Reinecke, Staph, and Raisch, 2001; Reinecke et al., 2005; Feichtinger et al., 2019).

?*Negaprion* sp. or ?*Carcharhinus* sp. (Figure 1G-J)

Figured material: antero-lateral upper tooth (DA53447/1), lower anterior tooth (DA53447/2), antero-lateral upper tooth (DA53447/3), and lateral lower tooth (DA53447/4).

Description and Discussion: This taxa is represented by several specimen that seem to exhibit strong dignathic heterodonty, with antero-lateral upper teeth (Figure 1G,I) having a broader cusp flanked by elongate, oblique lateral shoulders (sometimes notched) whereas lower lateral teeth (Figure 1H, J) have a erected, narrower cusp and smooth shoulders that are nearly perpendicular to the cusp in lateral files (Figure 1J). We are not sure if all specimens belongs to the same taxa or represents a composite set from several carcharhinid. Considering that material comes from a unique taxa, it remains those of *Negaprion* rather than *Carcharhinus* (e.g. shoulders sometimes slightly notched on upper teeth, no serration on both jaws and lower anterior teeth with relatively long cusp compared to root). However confusions between fossil teeth of *Negaprion* and those belonging to fossil *Carcharhinus* with smoothed cutting edges are notable and relatively usual concerning the Eocene- Early Oligocene specimens (Sweydan et al., 2019) leading some authors to undifferentiate the occurrences of *Carcharhinus* from those of *Negaprion* (e.g. Kriwet, 2005; Underwood and Gunter, 2012 ; Sweydan et al., 2019). Morphology of Thaytiniti specimen seem however different from those of the Late Eocene ?*Carcharhinus frequens* (Dames, 1883) observed in Rupelian deposits of the Qattara Depression (as *Negaprion*, Van Vliet et al., 2017) and of the Fayum (Quarries R and E, as *Carcharhinus* sp. in Murray et al., 2014: Figure 4) in Egypt. They also differ from Late Eocene ?*Negaprion* or ?*Carcharhinus* sp. recovered until the Latest Eocene-Earliest Oligocene of Tunisia (Sweydan et al., 2019) and from the greater *Negaprion* sp. from Rupelian of Pakistan (Adnet et al., 2007).

***Rhizoprionodon* sp. (Figure 1N-O)**

Figured material: anterior tooth (DA53450/1), and lateral tooth (DA53450/2).

Description and Discussion: Post Eocene evidences of *Rhizoprionodon* are relatively common in tropical worldwide deposits leading some authors to propose that the current distribution of the seven recent species is most likely a result of a former widespread distribution along Tethyan mangroves in the mid-Cenozoic, affected by successive vicariance events (Briggs, 1995; Musik et al., 2004; Gallo et al., 2010). Besides the fact that tooth morphology of fossil *Rhizoprionodon* is quite conservative, diphycodont and gynandric heterodonties are frequently observed in fresh jaws of Recent representatives (Adnet et al., 2020) leading its use in systematics from a poor sample highly uncertain.

Galeocerdonidae Poey, 1875***Galeocerdo* cf. *aduncus* Agassiz, 1843 (Figure 1F)**

Figured material: lateral tooth (DA53446).

Description and Discussion: Morphologically closed to the living species, teeth of *G. aduncus* are often separated from extend species *G. cuvier* based on the size as well as the absence of secondary serrations on the mesial cutting edge (Applegate 1978; Cigala-Fulgosi and Mori 1979; Kent 2018). They are however sometimes confused or synonymised with this later, considering they belong to its juveniles (Purdy et al., 2001). Türtscher et al., (2021) recently confirmed the systematics statute for this common fossil species known worldwide from Early Oligocene to Late Miocene and previously recorded in the Early Miocene of Sharbithat (Adnet and Charpentier, 2022).

Hemigaleidae Hasse, 1878**?*Moerigaleus* sp. (Figure 1P)**

Figured material: lower anterior tooth (DA53451).

Description and Discussion: The crown is either unornamented. Tooth is strongly compressed labiolingually and the cusp is high compared with the root. The unique upper anterolateral tooth (Figure 1P) bears a pair a pair of minute hook-shaped denticles below its both cutting edges. The

rare material available here reminds those of the unique species *M. vitreodon* from the Late Eocene of Egypt, a fossil hemigaleid shark known since the Lutetian-Bartonian period (Underwood and Ward, 2011; Adnet et al., 2020). Its occurrence until Early Oligocene must be now confirmed. Cappetta in Thomas et al. (1989) probably confused this with Eocene species *Hemipristis curvatus*.

***Hemipristis* cf. *serra* Agassiz, 1843 (Figure 1K)**

Figured material: anterior upper tooth (DA53448).

Description and Discussion: Fragment of upper teeth and one sub complete anterior lower tooth (Figure 1K) could confirm presence of this worldwide great shark reported since the Early Oligocene (e.g., Adnet et al., 2007; Van Vliet et al., 2017) until the Pleistocene of Alabama (Ebersole, Ebersole, and Cicimurri, 2017). The lower anterior tooth (Figure 1K) has unserrated, long, pointing and lingually inclined cusp with two pair of minute cusplets near the base. The cutting edges, salient, do not reach the base of crown. Root is bilobed with crown extinctions well overlaying the root lobes in labial view. Succeeding to the Eocene *Hemipristis curvatus*, the lower teeth of *H. serra* easily distinct from its supposed ancestor by having elongated sigmoid cusp with basally interrupted cutting edges and flanked by one to several pairs of hooked secondary denticles as figurate in the Early Miocene of Sharbithat (Adnet and Charpentier, 2022: Fig. 3 IJ).

RHINOPRISTIFORMS**Rhinobatidae Bonaparte, 1835****“*Rhinobatos*” sp. (Figure 1U-W)**

Figured material: anterior tooth (DA53454/1), antero-lateral tooth (DA53454/2), lateral tooth (DA53454/3).

Description and Discussion: Relatively common in the Cretaceous-Paleogene levels, oral teeth of this genus are often confused with those of Pristids before Middle Eocene and appearance of the characteristic rostral denticles of the last ones (Cappetta, 2012). No partial or complete rostral denticle of Pristid was found in material recovered

at Thaytiniti nor at Taqah. Fossils of guitarfish, with its forty living species around the world, are surprisingly scarce in Oligocene (Adnet et al. 2007) and also in Neogene assemblages (e.g. Cappetta, 1970; Sahni and Mehrotra, 1981; Antunes, Balbino, and Cappetta, 1999; Reinecke et al., 2011; Sharma and Patnaik, 2013). Oman species (and the coeval specimen from Pakistan) differ from European Miocene species *R. antunesi* (Jonet, 1968) in having a more gracile shape, a lower crown with more developed pair of lateral uvulae and a larger and better marked nutritive groove on basal face of root. The unique lateral tooth of *R. sahnii* Sahni and Mehrotra, 1981 from the Lower Miocene of India could resembles our material, however the lingual extension of root lobes in *R. sahnii* seems lesser developed. Most of the fossil teeth attributed to *Rhinobatos* (Cappetta, 2006) are probably confused with that of guitarfish genera recently rehabilitated in systematics (e.g. *Glaugostegus*, *Platyrhinoides*, *Aptychotrema*, *Pseudobatos*, *Acrotheriobatus*, *Trygonorrhina*) but their precise dental morphologies are mainly unknown except for three species (Herman et al 1997; Cappetta 2012). We note that root of *Rhinobatos* sp from Thaytiniti preferentially resemble to that of *Glaugostegus cemiculus* (Herman et al. 1997). Only a deep study of Recent species would probably allow to correctly define tooth characters of the guitarfish taxa.

Rhinidae Müller & Henle, 1841

Rhynchobatus aff. *pristinus* (Probst, 1877) (Figure 1X)

Figured material: lateral tooth (DA53454).

Description and Discussion: The teeth have a massive appearance, symmetric to slightly asymmetric in lateral files (Figure 1X). The oral face of the crown may be differentiated into a labial area, more or less convex and an occlusal area that has a triangular shape separated from the previous one by a clear straight crest. Both presenting ornamentation of enameloid granules (Figure 1X1). A third area, the lingual area smooth and bears a well-developed enameled protuberance forming a long central uvula. The root is massive with two lobes well

separated by a deep groove. On the lingual face of the root, and on each side of the uvula, there is a well-marked depression with a big margino-lingual foramen. The teeth of *R. pristinus* are commonly reported in all the Oligo-Miocene deposits around the world (e.g. Cappetta 1970, 2012) and it is likely that they belong in fact to several species.

MYLIOBATIFORMS

Dasyatidae Jordan & Gilbert, 1879

Himantura sp. (Figure 1Y-Z)

Figured material: lateral tooth (DA53455/1), and anterior tooth (DA53455/2).

Description and Discussion: Teeth are medium sized reaching 4mm length. The lack of well-detached cusp, the presence of an enameloid ornamentation over the occlusal part of the lingual face and over the entire labial face of crown, the presence of a short root with well-detached root lobes where an unique labial foramen opens remind the dental condition observable in many urogymnin like *Himantura*, *Pateobatis* or *Maculabatis*. Few fossils are clearly associated to these genera due to the volatility of synonymy among the dasyatids (Last, Naylor, and Manjaji-Matsumoto, 2016). Most of fossils of *Dasyatis* recovered by teeth need to be revised but the lack of illustrations of teeth of such extant taxa remains unknown for paleontologists (Guinot et al., 2018). These teeth however remain that is observable in *H. souarfotuna* from the mid Eocene of Tunisia (Adnet et al., 2020), in Miocene *Himantura menoni* or *Himantura* spp. from of Peninsular India (Shani and Merohtra, 1981; Sharma and Patnaik, 2013; Sharma et al., 2022), Madagascar (Andrianavalona et al., 2015) and Brunei Darussalam (Kocsis et al., 2018) respectively. Restudy of Early Oligocene Pakistan material from Paali Nala (Adnet et al. 2007) suggest that Oman and Pakistan species, even unnamed, are clearly conspecific. Today the modern species of this whipray live in the Indo-Pacific region. They inhabit inshore waters but some have also been reported from lagoons, brackish estuaries and mangrove swamps (Last, Naylor, and Manjaji-Matsumoto, 2016)

?*Taeniura* (Figure 1AA-AB)

Figured material: anterior tooth (DA53456/1), and anterior tooth (DA53456/2).

Description and Discussion: Teeth are smaller sized compared to previous dasyatid (Figure 1Y-Z). Crown is relatively high and its occlusal part (mainly formed by transversal crest) is irregularly domed. Lingual face of crown is triangular shaped and enameloid is mainly smooth. At the contrary, enameloid of the labial face of crown has a few irregular ridges. Without deeply ornamented enameloid on labial face, the tooth morphology is quite different from Neogene *Taeniurops cavernosus* (Probst, 1877), *Dasyatis rugosa* and *Dasyatis delfortiei* Cappetta, 1970 also sometimes reported in Oligocene deposits. On the other hand, teeth remind that tooth from Early Oligocene of Egypt figured as *Taeniura* sp. (Murray et al., 2014). Unfortunately, no study of tooth morphologies within the most diversified subfamilies of Dasyatid (Dasyatinae, Neotrygoninae and Urogymininae) is available due to incompleteness of tooth figuration (Guinot et al., 2018), justifying we reserve our generic attribution.

Dasyatidae indet (Figure 1AC)

Figured material: anterior tooth (DA53457).

Description and Discussion: Crown morphology of some teeth is quite singular for a dasyatid and does not correspond to both previous species. Transversal crest is well-developed, sharped and form a pseudo cusp, flat and few elongated mediolingually. Lingual face of crown is as large as high, entire smooth and largely overlap the root lingually. Labial face of crown is relatively flat to concave and is covered with a very finely serrated enameloid. Root is narrow and root lobes, often damaged, seem few extended lingually. At the present time, these fossil remains available (teeth) did not allow recognition a given Dasyatid-like genus.

Rhinopteridae Jordan & Evermann, 1896***Rhinoptera* sp. (not figured)**

Description and Discussion: Among other characters, teeth of *Rhinoptera* differ from those of *Myliobatis* in the absence of a distinct shelf at the crown base and in having more regular hexagonal outline in

occlusal view. Unfortunately, no complete teeth are conserved forcing us to reserve our determination.

Myliobatidae Bonaparte, 1835***Aetobatus* sp. (not figured)**

Description and Discussion: Unfortunately, the dental plate of this malacophagous ray is only recorded by some fragmentary teeth. The identified fragments are principally those of the upper teeth. The teeth are fairly rectilinear except the lateral edges which are curved towards the back. The width of the crown decreases toward the lateral extremities as in any *Aetobatus*. The external face of the teeth is subvertical while the internal face is oblique. The root bends lingually and is composed of a succession of grooves and laminae. Isolated teeth of this genus are commonly reported in Cenozoic deposits but only complete dental plates allow serious identification (Hovestadt. and Hovestadt-Euler, 2013).

DISCUSSION**PALEOENVIRONMENT OF EARLY OLIGOCENE MARINE DEPOSITS**

The environment at Thaytiniti was first considered as shallow coastal marine (Thomas et al., 1989) due to the mix of marine species (e.g. elasmobranchs) and terrestrial gastropod, reptiles and mammals (Thomas et al., 1988, 1989, 1999; Thomas, Roger, and Al Sulaimani, 1991a; Pickford et al. 1994, 2014, Pickford 2015). Otero and Gayet (2001) secondary studied the bony fish fauna of Thaytiniti. This last was mainly composed of stenohaline freshwater fishes (teleosts and the dipnoan *Protopterus*) living in different freshwater environments on the continent (swamps and running waters), of freshwater taxa that tolerate temporarily marine sea in estuaries (e.g. some teleosts and a crocodilian *Gavialidae*) and marine fish including diodontids (porcupine fish) and elasmobranchs. These last authors concluded that the presence of a mixed marine and freshwater ichthyofaunas (probably transported to the seashore as the floating mammals carcass), preserved as separated elements only, agrees with first paleoenvironmental interpretation. Later, Adnet et al. (2007) suggested

also that the contemporaneous Paali Nala sands from Baluchistan (Pakistan), recording a very close elasmobranch associations of Thaytiniti, were probably deposited in a brackish zone of a large river near an estuary. The modern elasmobranch association from Thaytiniti (dominated by carcharhinids in frequencies and diversity) makes it directly comparable with those of the tropical recent coasts (Compagno, 1990). Abundance of carcharhinids, stingrays and guitar rays are all indicative of an extreme littoral habitat in tropical latitude; pelagic usual Oligocene elasmobranchs frequenting more open seas (e.g. Lamniformes) being entirely absent of both localities. In addition, all the living sharks and rays usually considered as representatives to the Thaytiniti (and also Taqah) fossils are mostly euryhaline species known to occur on or adjacent to continental and insular shelves, frequenting river estuaries (e.g. *Galeocerdo cuvier*, *Nebrius* spp., *Chiloscyllium* spp., *Rhizoprionodon* spp., *Rhynchobatus* spp.) and/or penetrate tropical

rivers (e.g., *Carcharhinus leucas* or *C. amboinensis*, *Negaprion acutidens* and *Rhinobatos* species) as well as to live exclusively in freshwater (some species of *Dasyatis/Himantura*). In agreement with the previous fossil studies from Thaytiniti, the presence of a mixed coastal marine, brackish to freshwater elasmobranchs agrees with previous paleoenvironmental interpretations (Figure 2).

The environment at Taqah was more precisely reconstructed (Thomas et al., 1991b; Roger et al., 1993) from a multidisciplinary study based on excavation and screening of several tons of sediments. All the fossils, including also many terrestrial mammals (Sigé et al., 1994) and sedimentological evidences from fossil-bearing level of Taqah seem indicate that this horizon accumulated in a shallow coastal swamp, sporadically influenced by sea, under hot and semi-arid climate. Elasmobranch fauna from Taqah seems drastically lower diversified compared to those from Thaytiniti, suggesting a more confined marine area than in Thaytiniti.

Figure 2: Possible reconstitution of Thaytiniti locality at Early Oligocene. Asteroida and Decapod Xanthidae/Calappidae (Thomas et al. 1989) ; Tetraodontidae (Otero & Gayet, 2001) ; Rhinid; Carcharhinid (e.g. *Carcharhinus perseus*) and Dasyatid (e.g. *Himantura*) (this work).

OLIGO-MIOCENE ELASMOBRANCHS, THE RISE OF MODERN TROPICAL LIFE

This work is first a new contribution to the paleontological studies devoted to fossil remains of Elasmobranchs in the Sultanate of Oman that are currently limited to teeth, dermic denticles and fin spines of Ctenacantiforms and Hybodontiforms from Haushi-Hugf, Mountains at Jabal Safra, Wadi Alwa and Wadi Wasit, Middle Permian–Lower Triassic (Koot et al. 2013, 2015); a spine remain of ray from the Hugf region (Roger et al. 1994) and teeth from Sharbithat region (Charpentier, Adnet, and Cappetta, 2020; Adnet and Charpentier, 2022), Early Miocene (Figure 3). The Early Oligocene tropical seas were clearly different geographically from today, especially around the Middle East. The Proto Mediterranean Sea (namely Western Tethys also ramified north-easterly to the Paratethys, a gigantic interior sea) and the Indian Ocean are still connected by Eastern Tethys north of the Arabian Plate (Meulenkamp and Sissingh 2003). For long the only Oligocene Indian Ocean Elasmobranch elements were known through the fossil locality of Paali Nala, Pakistan (Adnet et al., 2007) if we exclude the frequent reports of the preliminary listing from Thaytiniti available in Thomas et al. (1989).

Other contemporaneous Elasmobranch fauna from Eastern Tethys are only represented by the Rupelian associations from Minqar Tibaghbagh, Egypt (Van Bliet et al., 2017 with *Hemipristis cf. serra*, *Carcharhinus cf. perseus*, *carcharhinus* sp., *Negaprion frequens*, *Galeocerdo* sp., *Carcharias*, sp., *Otodus (Carcharocles) cf. sokolowi* and “*Aetobatus*” sp.) and those from the Jebel Qatrani Formation of the Fayum Depression, Egypt too (Murray, 2004; Murray et al. 2014 with *Carcharhinus cf. C. perseus*, *Carcharhinus* sp., *Aetobatus* sp., *Galeocerdo* sp., cf. *Misrichthys stromeri*; *Rhinoptera* sp., *Pastinachus* sp. *Dasyatis* sp., *Odontorhynchus* sp.).

All the taxa recovered at Thaytiniti and Taqah, except *Moerigaleus*, *?Stegostoma*, are known at Paali Nala (Adnet et al. 2007) and belong to modern

genera that currently frequent the Indo Pacific oceanic realm. Their presence in Early Oligocene deposits of Oman coast was thus predictable and the formal reporting of fossil bamboo shark, zebra shark and guitarfish recovered here ascertain the oldest record of modern representatives in the fossil Indian Ocean. Large oceanic sharks recovered in locality of the Egyptian Western Desert (e.g. *Otodus (Carcharocles) cf. sokolowi*; *Carcharias*, sp.) are unknown at Thaytiniti and Taqah and these lacks from their fossil-bearing levels are relative to the shallow costal swamp condition of deposits, as also observed in Paali Nala.

Oligocene Elasmobranch records are relatively scarce compared to other periods, often reduced to isolated taxa, they principally come from highest latitudes of Paratethys (Bienkowska-Wasiluk and Radwanski 2009; Szabó and Kocsis, 2016; Cappetta, Gregorova, and Adnet, 2016, Szabó et al., 2017, Prokofiev and Sychevskaya, 2018); North Atlantic (Bor, 1990; Hovestadt and Hovestadt-Euler, 1999, 2002 Cicimuri and Knight 2009, Shimada, Welton, and Long, 2014; Mollen 2007; Mollen, Van Bakel, and Jagt, 2016; Reinecke, Staf, and Raisch, 2001; Reinecke et al., 2014, Reinecke, Von der Hocht, and Dufraing, 2015; Reinecke et al., 2020) and North Pacific (Applegate and Uyeno, 1965, Uyeno, Yabumoto, and Kuga, 1984, Tomita and Oji, 2010, Welton, 2016ab; Welton and Goedert, 2016).

If many worldwide Early Oligocene taxa are commonly observed in Oman (e.g. *Hemipristis*, *Negaprion*, *Carcharhinus*, *Galeocerdo*, *Nebrius*), none of these high-latitude localities have recovered the modern Eastern Tethysian taxa *Carcharhinus perseus*, cf. *Stegostoma*, *Chiloscylium* nor “*Rhinobatos*”. Moreover, diversity in lamniforms is significantly greater in highest latitudes deposits than in Eastern Tethys where carcharhiniforms already dominate assemblages. The presence of modern taxa belonging to eleven families including many Carcharhiniforms and Orectolobiforms (large requiem shark, zebra and bamboo shark, stingray, guitarfish) in Egypt, Oman and Pakistan stresses in the Eastern Tethysian ichthyofauna the Indo Pacific stamp ever noticed for Late Paleogene deposits. Initiation of

polar ice sheets with the Antarctic glaciation near the end of the Eocene has been closely linked to the global cooling of the Eocene/Oligocene boundary. Fall to 26°C during Earliest Rupelian (~33My), the tropical sea surface temperature quickly returned to

warmer conditions (30°C ~29My) according O'Brien et al. (2020). The tropical Rupelian Elasmobranch fauna recovered in Oman, Pakistan and Egypt do not testify of any faunal change that could be indicative of temperature fall recorded in Earliest Rupelian.

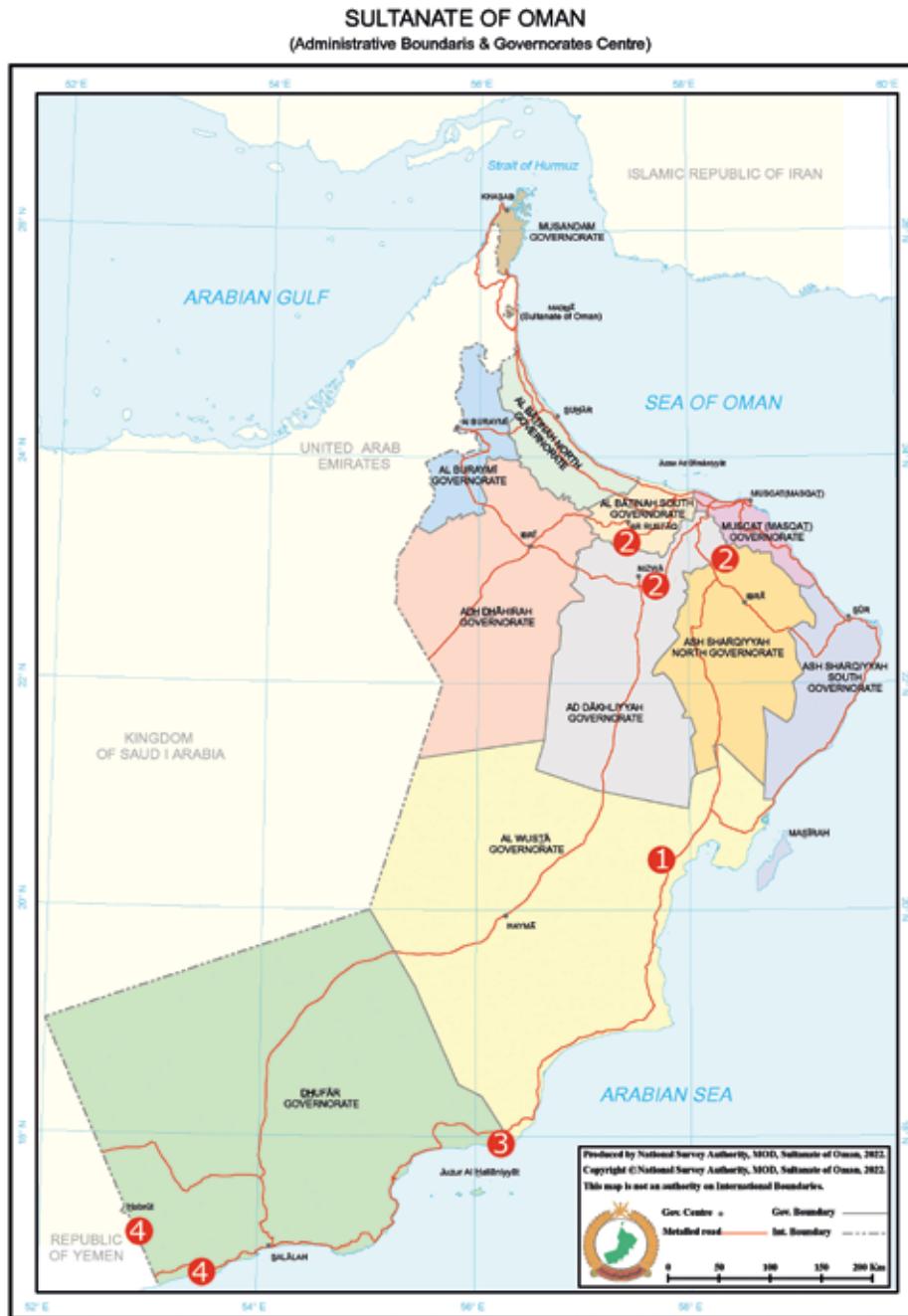


Figure 3: *Oman localities with fossil elasmobranchs: 1. Middle Permian from Haushi-Hugfarea (Roger et al., 1994 ; Koot et al., 2013), 2. Permo-Triassic from the Oman Mountains at Jabal Safra, Wadi Alwa and Wadi Wasit (Koot et al., 2015); 3. Early Miocene from Sharbitat area (Charpentier, Adnet, and Cappetta, 2020; Adnet and Charpentier, 2022); 4. Early Oligocene from Thaytiniti and Taqah areas (Thomas et al., 1989, this work).*

The future description of a much richer assemblages from those localities is possible due to the combination of a new wave of field project including the systematic use of screening sampling methods on fields. Like ever evidenced in younger site recovered in Oman (Charpentier, Adnet, and Cappetta, 2020; Adnet and Charpentier, 2022) and elsewhere around Indian Ocean (Priem 1907; Mehrotra et al., 1973 ; Sahni & Mehrotra, 1981 ; Andrianavalona et al., 2015; Sharma et al., 2022), an important part of the Elasmobranch diversity might be easily revealed by their teeth. This is particularly interesting with fossiliferous marine deposits before the mid-Miocene closure of Eastern Tethys induced by the collision of the African–Arabian plate with the Eurasian plate to precisely track what is considered to be a major driver of tropical marine biodiversity (Cowman and Bellwood 2013; Harzhauser et al. 2007; Renema et al. 2008; Malaquias and Reid 2009; Hou and Li 2018; Liu et al. 2018).

ACKNOWLEDGEMENTS

We wish to thank the Ministry of Heritage and Tourism of the Sultanate of Oman for granting us permission to carry out reference to H.E. Salim Mohammed Al Mahruqi, Minister; Mr. Sultan Said Al-Bakri, Director General for Archaeology; Mr Khamis Al Asmi, Director of the Department of Excavations and Archaeological Studies; M. Ali Al Mashani of the Salalah department. We would like to thank the Consultative Commission for Excavations Abroad of the French Ministry of European and Foreign Affairs, the Agence Nationale de la Recherche with the NeoArabia Program (Agence National de la Recherche (ANR-16-CE03-0007), Centre National de Recherche Scientifique (CNRS), Institut national de recherches archéologiques preventives (Inrap), Muséum National d'Histoire Naturelle) for funding the archaeological Mission «Archaeology of the Arabian Sheashores». We are particularly indebted to the editor, and to both anonymous reviewers for their useful comments and helpful suggestions on a previous version of the manuscript.

BIBLIOGRAPHY

Adnet, S., Antoine, P.-O., Hassan Baqri, S.R., Crochet, J.-Y., Marivaux, L., Welcomme, J.-L. and Métais, G. (2007) "New tropical carcharhinids (chondrichthyes, carcharhiniformes) from the late Eocene–early Oligocene of Balochistan, Pakistan: Paleoenvironmental and paleogeographic implications", *Journal of Asian Earth Sciences*, vol. 30, pp. 303–323.

Adnet, S., Marivaux, L., Cappetta, H., Charrault, A.-L., Essid, El M., Jiquel, S., Ammar, H. K., Marandat, B., Marzougui, W., Merzeraud, G., Temani, R., Vianey-Liaud, M. and Tabuce, R.. (2020) "Diversity and renewal of tropical elasmobranchs around the Middle Eocene Climatic Optimum (MECO) in North Africa: New data from the lagoonal deposits of Djebel el Kébar, Central Tunisia", *Palaeontologia Electronica*, vol. 23(2):a38.

Adnet, S. and Charpentier, V. (2022) "A new elasmobranch fauna from the Early Miocene of Sharbithat (Sultanate of Oman) reveals teeth of an ancient fantail stingray", *Geologica Acta* vol. 20.2, pp. 1-13.

Aguilera O., Luz Z., Carrillo-Briceño J.D., Kocsis L., Vennemann T.W., de Toledo P.M., Nogueira A., Amorim K.B., Moraes-Santos H., Polck M.R., Ruivo M.L., Linhares A.P. and Monteiro-Neto C. (2017) "Neogene sharks and rays from the Brazilian 'Blue Amazon'", *PLoS One*, Vol. 12(8):e0182740.

Al-Kindi, M., Pickford, M. , Al-Sinani, Y., Al-Ismaili, I., Hartman, A. and Heward, A. (2017). "Large mammals from the Rupelian of Oman—Recent finds", *Fossil Imprint*, vol. 73, pp. 300-321.

Andrianavalona, T.H., Ramihangihajason, T.N., Rasoamiaramanana, A., Ward, D.J., Ali, J.R. and Samonds, K.E. (2015) "Miocene Shark and Batoid Fauna from Nosy Makamby (Mahajanga Basin, Northwestern Madagascar)", *PLoS One*, Vol. 10, e0129444.

Applegate, S. P. (1978) "Phyletic studies. Part 1, Tiger sharks", *Revista Mexicana de ciencias geológicas*, vol. 2, pp. 55–64.

Applegate, S. and Uyeno, T. (1968) "The first Discovery of fossil tooth belonging to the Shark Genus Heptranchias, with a new Pristiophorus Spine, Both from the Oligocene of Japan", *Bulletin of National Sciences Museum, Tokyo*, vol. 11, pp. 195–200.

Antunes, M.T., Balbino, A.C. and Cappetta, H. (1999) "Sélaciens du Miocène terminal du bassin d'Alvalade (Portugal) Essai de synthèse", *Ciêncas da Terra*, vol. 13, pp. 115–129.

Bienkowska-Wasiluk, M. and Radwanski, A. (2009) "A new occurrence of sharks in the Menilite Formation (Lower Oligocene) from the Outer (Flysch) Carpathians of Poland", *Acta Geologica Polonica*, vol. 59, pp. 235–243.

Bor, T.J. (1990) "A new species of mobulid ray (Elasmobranchii, Mobulidae) from the oligocene of Belgium", *Contributions to Tertiary and Quaternary Geology*, vo. 27, pp. 93–97.

Briggs, J.C. (1995) "Global biogeography", Elsevier, Amsterdam, The Netherlands.

Cappetta, H. (1970) "Les sélaciens du Miocène de la région de Montpellier" *Palaeovertebrata, Mémoire Extraordinaire*, vol. 3, pp. 1–139.

Cappetta, H. (2006) Elasmobranchii Post-Triadici. Fossilium Catalogus, I: Animalia, 142. Backhuys Publishers, Leiden,

Cappetta, H. (2012) "Chondrichthyes II Mesozoic and Cenozoic Elasmobranchii: Teeth", Handbook of Paleoichthyology. Verlag Dr. Friedrich Pfeil, Stuttgart-New York.

Cappetta, H. and Case, G.R. (2016) "A Selachian Fauna from the Middle Eocene (Lutetian, Lisbon Formation) of Andalusia, Covington County, Alabama, USA" *Palaeontographica Abteilung A*, vol. 307, pp. 43–103.

Cappetta, H., Gregorova, R.. and Adnet, S. (2016) "New selachian assemblages from the Oligocene of Moravia (Czech Republic)" *Neues Jahrbuch für Geologie und Paläontologie*, vol. 280/3, pp. 259–284

Case, G.R. and West, R.M. (1991) "Geology and Paleontology of the Eocene Drazinda Shale Member of the Khirthar Formation, central Western Pakistan, Part II Late Eocene fishes", *Tertiary Research*, vol. 12, pp. 105–120.

Charpentier, V., Adnet, S. and Cappetta, H. (2020) "The tooth of a giant sea creature (*Otodus Megaselachus*) in the material culture of Neolithic maritime hunter-gatherers at Sharbithat (Sultanate of Oman)", *International Journal of Osteoarchaeology*, vol. 30(6), pp. 835–842.

Cicimurri, D.J. and Knight, J.L. (2009) "Late Oligocene Sharks and Rays from the Chandler Bridge Formation, Dorchester County, South Carolina, USA", *Acta Palaeontologica Polonica*, vol. 54, pp. 627–647.

Cigala-Fulgosi, F. and D. Mori. (1979) "Osservazioni tassonomiche sul genere Galeocerdo (Selachii, Carcharhinidae) con particolare riferimento a Galeocerdo cuvieri (Péron & Lesueur) nel Pliocene del Mediterraneo", *Bollettino della Società Paleontologica Italiana*, vol. 18, pp. 117–132.

Compagno, L.J.V. (1990) "Alternative life-history styles of cartilaginous fishes in time and space", *Environmental Biology of Fishes*, Vol. 28, pp. 33–75.

Ebersole, J.A., Ebersole, S.M. and Cicimurri, D.J. (2017) "The occurrence of early Pleistocene marine fish remains from the Gulf Coast of Mobile County, Alabama, USA", *Palaeodiversity*, vol. 10, pp. 97–115.

Ebersole, J.A., Cicimurri, D.J. and Stringer, G.L. (2019) "Taxonomy and biostratigraphy of the elasmobranchs and bony fishes (Chondrichthyes and Osteichthyes) of the lower-to-middle Eocene (Ypresian to Bartonian) Claiborne Group in Alabama, USA, including an analysis of otoliths", *European Journal of Taxonomy*, (585).

Feichtinger, I., Kranner, M., Rupp, C. and Harzhauser, M. (2019) "A new outer neritic elasmobranch assemblage from the Egerian (late Oligocene) of the North Alpine Foreland Basin (Austria)", *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen*, vol. 293(1), pp. 19–35.

Gallo, V., Cavalcanti, M.J., Da Silva, R.F.L., Da Silva, H.M.A. and Pagnoncelli, D. (2010) "Panbiogeographical analysis of the shark genus *Rhizoprionodon* (Chondrichthyes, Carcharhiniformes, Carcharhinidae)", *Journal of Fish Biology*, vol. 76, pp. 1696–1713

Genault, B. (1993) "Contribution à l'étude des elasmobranches oligocène du Bassin de Paris 2. découverte de deux horizons à Elasmobranches dans le Stampien (Sables de Fontainebleau) de la feuille géologique de Chartres", *COSSMANNIANA*, vol. 2, pp. 13–36.

Guinot, G., Adnet, S., Shimada, K., Underwood, C.J., Siversson, M., Ward, D.J., Kriwet, J. and Cappetta, H. (2018) "On the need of providing tooth morphology in descriptions of extant elasmobranch species", *Zootaxa*, vol. 4461, pp. 118–126.

Hansen, J., Sato, M., Russell, G. and Kharecha, P. (2013) "Climate sensitivity, sea level and atmospheric carbon dioxide", *Philosophical Transactions of the Royal Society A*, vol. 371, 20120294.

Harzhauser, M., Kroh, A., Mandic, O., Piller, W.E., Gohlich, U., Reuter, M. and Berning, B. (2007) "Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway", *Zoologischer Anzeiger*, vol. 246, pp. 241-256.

Herman, J. and Crochard, M. (1977) "Additions to the Eocene fish of Belgium. 3. Revision of the Orectolobiformes", *Tertiary Research*, vol. 1, pp 127-138.

Herman, J., Hovestadt - Euler, M. and. Hovestadt, D.C. (1992) "Part A: Selachii. N°4. Order: Orectolobiformes. Families : Brachaeluridae, Ginglymostomatidae, Hemiscylliidae, Orectolobidae, Parascylliidae, Rhiniodontidae, Stegostomatidae. Order Pristiophoriformes-Family: Pristiophoridae. Order Squatiniformes-Family Squatinidae. Contributions to the Study of the Comparative Morphology of Teeth and Other Relevant Ichthyodorulites in Living Supraspecific Taxa of Chondrichthyan Fishes", *Bulletin de l'Institut royal des Sciences naturelles de Belgique*, vol. 62, pp. 193-254.

Herman, J., Hovestadt - Euler, M., Hovestadt, D.C. & Stehmann, M. (1997) "Part B: Batomorphii. N°2. Order Rajiformes -Suborder Pristoidei-Family: Pristidae -Genera: Anoxypristis and Pristis. N°3: Suborder Rajoidei -Superfamily Rhinobatoidea -Families Rhinidae -Genera: Rhina and Rhynchobatus and Rhinobatidae -Genera: Aptychotrema, Platyrhina, Platyrhinoidis, Rhinobatos, Trigonorrhina, Zanobatus and Zapteryx. Contributions to the Study of the Comparative Morphology of Teeth and Other Relevant Ichthyodorulites in Living Supraspecific Taxa of Chondrichthyan Fishes", *Bulletin de l'Institut royal des Sciences naturelles de Belgique*, vol.67, pp. 107-162.

Hovestadt, D.C., Hovestadt-Euler, M. (1999) "Weissobatis micklichi n.gen., n.sp., an eagle ray (Myliobatiformes, Myliobatidae) from the Oligocene of Frauenweiler (Baden-Wurttemberg, Germany)", *Palaontologische Zeitschrift*, vol. 73, pp. 337-349.

Hovestadt, D.C., Hovestadt-Euler, M. (2002) "The remains of a carcharhinid shark with a new triakid species in its digestive tract from the Oligocene of Germany", *Tertiary Research*, vol. 21, pp. 171-182.

Hovestadt, D., Hovestadt - Euler, T. (2013) "Generic assessment and reallocation of Cenozoic Myliobatins based on new information of tooth, tooth plate and caudal spine morphology of extant taxa", *Paleontos*, vol. 24, pp. 1-80.

Kent, B. W (2018) "The cartilaginous fishes (Chimaeras, Sharks, and Rays) of Calvert Cliffs, Maryland, USA". In S. J. Godfrey, (Ed) The Geology and Vertebrate Paleontology of Calvert Cliffs, Maryland, USA. Smithsonian Contributions to Paleobiology vol. 100, pp. 45-157.

Koot, M. B. ; G. Cuny, A. Tintori and R. J. Twitchett (2013) "A new diverse shark fauna from the Wordian (Middle Permian) Khuff Formation in the interior Haushi-Huqf area, Sultanate of Oman", *Palaeontology*, vol. 56, pp. 303-343.

Koot, M.B. & Cuny, G. & Orchard, M.J. & Richoz, S. & Hart, M.B. and Twitchett, R.J. (2015) "New hybodontiform and neoselachian sharks from the Lower Triassic of Oman", *Journal of Systematic Palaeontology*, vol. 13(10), pp. 891-917.

Kriwet, J. (2005) "Addition to the eocene selachian fauna of Antarctica with comment on antarctic selachian diversity", *Journal of Vertebrate Paleontology*, vol. 25, pp. 1-7.

Last, P.R., Naylor, G.J.P. and Manjaji-Matsumoto, B.M. (2016) "A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights", *Zootaxa*, vol. 4139, pp. 345-368.

Kocsis, L. Razak, H., Briguglio, A. and Szabó, M. (2018) "First report on a diverse Neogene cartilaginous fish fauna from Borneo (Ambig Hill, Brunei Darussalam)", *Journal of Systematic Palaeontology*, vol. 17(10), pp. 791-819.

Martin, R.A. (2005) "Conservation of freshwater and euryhaline elasmobranchs: a review", *Journal of the Marine Biological Association of the United Kingdom*, vol. 85, pp. 1049-1073.

Mehrotra, D.K., Mishra, V.P. and Srivastava, S. (1973) "Miocene Sharks from India", *Recent Research in Geology*, vol. 1, pp. 180-187.

Meulenkamp, J.E. and Sissingh, W. (2003) "Tertiary palaeogeography and tectonostratigraphic evolution

of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone”, *Palaeogeography, Palaeoclimatology, Palaeoecology*, vol. 196, pp. 209–228.

Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., ... and Pekar, S. F. (2005) “The Phanerozoic record of global sea-level change”, *Science*, vol. 310, pp. 1293–1298.

Mollen, F.H. (2007) “A new species of *Abdounia* (Elasmobranchii, Carcharhinidae) from the base of the Boom Clay Formation (Oligocene) in northwest Belgium”, *Geologica Belgica*, vol. 10/1-2, pp. 69-77.

Mollen, F.H., Van Bakel, B.W.M. and Jagt, J.W.M. (2016) “A partial braincase and other skeletal remains of Oligocene angel sharks (Squatiniformes) from NW Belgium, with comments on squatinoid taxonomy”, *Contribution to Zoology*, vol. 85, pp. 147–171.

Murray, A.M. (2004) “Late Eocene and early Oligocene teleost and associated ichthyofauna of the Jebel Qatrani Formation, Fayum, Egypt”, *Palaeontology*, vol. 47, pp. 711–724.

Murray, A.M., Argyriou, T., Cook, T.D. and Sues, H.-D. (2014) “Palaeobiogeographic relationships and palaeoenvironmental implications of an earliest Oligocene Tethyan ichthyofauna from Egypt”, *Canadian Journal of Earth Sciences*, vol. 51, pp. 909–918.

Noubhani, A. and Cappetta, H. (1997) “Les Orectolobiformes, Carcharhiniformes et Myliobatiformes (Elasmobranchii, Neoselachii) des bassins à phosphate du Maroc (Maastrichtien-Lutétien basal). Systématique, biostratigraphie, évolution et dynamique des faunes”. *Palaeo Ichthyologica*, vol. 8, pp. 1–327.

O’Brien, C. L., Huber, M., Thomas, E., Pagani, M., Super, J. R., Elder, L. E. and Hull, P. M. (2020) “The enigma of Oligocene climate and global surface temperature evolution”, *Proceedings of the National Academy of Sciences*, vol. 117(41), pp. 25302–25309.

Otero, O. and Gayet, M. (2001) “Palaeoichthyofaunas from the Lower Oligocene and Miocene of the Arabian Plate: palaeoecological and palaeobiogeographical implications”, *Palaeogeography, Palaeoclimatology, Palaeoecology*, vol. 165(1-2), pp. 141–169.

Pickford, M. (2015) “Large ungulates from the basal Oligocene of Oman: 2-Proboscidea”, *Spanish Journal of Palaeontology*, vol. 30(2), pp. 209–222

Pickford, M., Gheerbrant, E., Sen, S., Roger, J. and Sulaimani, Z. (2014) “Palaeogene non-marine molluscs from Oman: implications for the timing of uplift of the Dhofar Plateau and the opening of the Red Sea and Gulf of Aden”, *Geological Society, London, Special Publications*, vol. 392(1), pp. 93–105.

Pickford, M., Thomas, H., Sen, S., Roger, J. and Gheerbrant, E. (1994) “Early Oligocene Hyracoidea (Mammalia) from Thaytimiti and Taqah, Dhofar Province, Sultanate of Oman”, *Comptes rendus de l’Académie des sciences. Série 2. Sciences de la terre et des planètes*, vol. 318(10), pp. 1395–1400.

Priem, M.F. (1907) “Note sur les poissons fossiles de Madagascar”, *Extrait du Bulletin de la Société Géologique de France*, vol. 4, VII, pp. 462–465.

Prokofiev, A.M. and Sychevskaya, E.K. (2018) “Basking Shark (Lamniformes: Cetorhinidae) from the Lower Oligocene of the Caucasus”, *Journal of Ichthyology*, vol. 58, pp. 127–138.

Purdy, R. W., V. P. Schneider, S. P. Applegate, J. H. McLellan, R. L. Meyer, and B. Slaughter, H. (2001) “The Neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina”, *Smithsonian Contributions to Paleobiology*, vol. 90, pp. 71–202.

Reinecke, T., Balsberger, M., Beaury, B. and Pollerspöck, J. (2014) “The elasmobranch fauna of the Thalberg Beds, early Egerian (Chattian, Oligocene), in the Subalpine Molasse Basin near Siegsdorf, Bavaria, Germany”, *Paleontos*, vol. 26, pp. 1–128.

Reinecke, T., Louwye, S., Havekost, U. and Moths, H. (2011) “The elasmobranch fauna of the late Burdigalian, Miocene, at Werder-Uesen, Lower Saxony, Germany, and its relationships with Early Miocene faunas in the North Atlantic, Central Paratethys and Mediterranean”, *Paleontos*, vol. 20, pp. 1–170.

Reinecke, T., Moths, H., Grant, A. and Breitkreutz, H. (2005) “Die Elasmobranchier des norddeutschen Chattiums, insbesondere des Sternberger Gesteins (Eochattium, Oberes Oligozän)”, *Paleontos*, vol. 8, pp. 1–134.

Reinecke, T., Pollerspöck, J., Motomura, H., Bracher, H., Dufraing, L., Güthner, T. and Von der Hocht, F. (2020) “Sawsharks (Pristiophoriformes, Pristiophoridae) in the Oligocene and Neogene of Europe and their relationships with extant species based on teeth and rostral denticles”, *Paleontos*, vol. 33, pp. 1-163.

Reinecke, T., Stapf, H. and Raisch, M. (2001) “Die selachier un Chimären des unteren meeressandes und schleichsandes im Mainzer Becken (Rupelium, unteres Oligozän)”, *Palaeontos*, vol. 1, pp. 1-73.

Reinecke, T., Von der Hocht, F. and Dufraing, L. (2015) “Fossil basking shark of the genus *Keasius* (Lamniforme, Cetorhiniidae) from the boreal North Sea Basin and Upper Rhine Graben: evolution of dental characteristics from the Oligocene to late Middle Miocene and description of two new species”, *Paleontos*, vol. 28, pp. 1-60.

Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., ... and Pandolfi, J. M. (2008). Hopping hotspots: global shifts in marine biodiversity. *Science*, 321(5889), pp. 654-657.

Roger, J., Pickford, M., Thomas, H., De Lapparent, F., Tassy, P., Van Neer, W., Bourdillon-de-Grissac, C. and Al Busaidi, S. (1994) “Découverte de Vertébrés fossiles dans le Miocène de la région du Huqf au Sultanat d’Oman”, *Annales de Paléontologie (Vert-Invert)*, vol. 80(4), pp. 253-273.

Roger, J., Sen, S., Thomas, H., Cavelier, C. and Al Sulaimani, Z. (1993) “Stratigraphic, palaeomagnetic and palaeoenvironmental study of the Early Oligocene vertebrate locality of Taqah (Dhofar, Sultanate of Oman)”, *Newsletters on Stratigraphy*, vol. 28 (2-3), pp. 93-119.

Sahni, A. and Mehrotra, D.K. (1981) “The elasmobranch fauna of coastal Miocene sediments of peninsular India”, *Biological Memoirs*, vol. 5(2), pp. 83-121.

Samonds, K.E., Andrianavalona, T.H., Wallett, L.A., Zalmout, I.S. and Ward, D.J., (2019) “A middle - late Eocene neoselachian assemblage from nearshore marine deposits, Mahajanga Basin, northwestern Madagascar”, *PLoS One*, vol. 14, e0211789.

Seiffert, E. R. (2006) “Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman”, *Proceedings of the National Academy of Sciences*, vol. 103(13), pp. 5000-5005.

Seiffert, E. R., Nasir, S., Al-Harthy, A., Groenke, J. R., Kraatz, B. P., Stevens, N. J. and Al-Sayigh, A. R. (2012) “Diversity in the later Paleogene proboscidean radiation: a small barytheriid from the Oligocene of Dhofar Governorate, Sultanate of Oman”, *Naturwissenschaften*, vol. 99(2), pp. 133-141.

Sharma, K.M. and Patnaik, R. (2013) “Additional Fossil Batoids (Skates and Rays) from the Miocene Deposits of Baripada Beds, Mayurbhanj District, Orissa, India”, *Earth Sciences, India*, vol. 6 (IV), pp. 160-184.

Sharma, K.M., Singh, N.A., Patnaik, R., Tiwari, R.P., Singh, N.P., Singh, Y.P., Choudhary, D. and Lalotra, S.K. (2022) “Sharks and rays (chondrichthyes, elasmobranchii) from the miocene sediments of Kutch, Gujarat, India: paleoenvironmental and paleobiogeographic implications”, *Historical Biology*, vol. 34(1), pp. 10-29

Shimada, K., Welton, B.J. and Long, D.J. (2014) “A new fossil megamouth shark (Lamniformes, Megachasmidae) from the Oligocene-Miocene of the western United States”, *Journal of Vertebrate Paleontology*, vol. 34, pp. 281-290.

Sigé, B., Thomas, H., Sen, S., Gheerbrant, E., Roger, J. and Al Sulaimani, Z. (1994) “Les chiroptères de Taqah (Oligocène inférieur, Sultanat d’Oman). Premier inventaire systématique”, *Münchener Geowissenschaftliche Abhandlungen*, vol. 26, pp. 35-48.

Sweydan, S., Merzeraud, G., Essid, E.M., Marzougui, W., Temani, R., Ammar, H.K., Marivaux, L., Vianey-Liaud, M., Tabuce, R. and Adnet, S. (2019) “A reworked elasmobranch fauna from Tunisia providing a snapshot of Eocene-Oligocene Tethyan faunas”, *Journal of African Earth Sciences*, vol. 149, pp. 194-206.

Szabó, M. and Kocsis, L. (2016) “A new Middle Miocene selachian assemblage (Chondrichthyes, Elasmobranchii) from the Central Paratethys (Nyírád, Hungary): implications for temporal turnover and biogeography”, *Geologica Carpathica*, vol. 67, pp. 573-594.

Szabó, M., Botfalvai, G., Kocsis, L., Carnevale, G., Sztanó, O., Evanics, Z. and Rabi, M. (2017) “Upper Oligocene marine fishes from nearshore deposits of the Central Paratethys (Máriahalom, Hungary)”, *Palaeobiodiversity and Palaeoenvironments*, vol. 97, pp. 747-777.

Thomas, H., Roger, J., Sen, S. and Al Sulaimani, Z. (1988) "Découverte des plus anciens «anthropoïdes» du continent arabo-africain et d'un primate tarsiiforme dans l'Oligocène du sultanat d'Oman", *Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre*, vol. 306(12), pp. 823-829.

Thomas, H., Roger, J., Sen, S., Bourdillon-De-Grissac, C. and Al Sulaimani, Z. (1989) "Découverte de Vertébrés fossiles dans l'Oligocène inférieur du Dhofar (Sultanat d'Oman)", *Geobios*, vol. 22(1), pp. 101-120.

Thomas, H., Roger, J. and Al Sulaimani, Z. (1991a) "The discovery of *Moeripithecus markgrafi* Schlosser (Propliopithecidae, Anthropoidea, Primates), in the Ashawq Formation (Early Oligocene of Dhofar Province, Sultanate of Oman)", *Journal of Human Evolution*, vol. 20(1), pp. 33-49.

Thomas, H., Roger, J., Sen, S., Dejax, J. E., Schuler, M., Al Sulaimani, Z., ... and Noel, D. (1991b) "Essai de reconstitution des milieux de sédimentation et de vie des primates anthropoïdes de l'Oligocène de Taqah (Dhofar, Sultanat d'Oman)", *Bulletin de la Société géologique de France*, vol. 162(4), pp. 713-724.

Thomas, H., Roger, J., Sen, S., Pickford, M., Gheerbrant, E., Al-Sulaimani, Z. and AlBusaidi, S. (1999) "Oligocene and Miocene terrestrial vertebrates in the southern Arabian Peninsula (Sultanate of Oman) and their geodynamic and palaeogeographic settings". In: Whybrow, P.J., Hill, A. (Eds.), *Fossil Vertebrates of Arabia*. Yale University Press, New Haven, pp. 430-442.

Tomita, T. and Oji, T. (2010) "Habitat Reconstruction of Oligocene Elasmobranchs from Yamaga Formation, Ashiya Group, Western Japan", *Paleontological Research*, vol. 14(1), pp. 69-80.

Türtscher, J., López-Romero, F.A., Jambura, P.L., Kindlimann, R., Ward, D.J. and Kriwet, J. (2021) "Evolution, diversity, and disparity of the tiger shark lineage *Galeocerdo* in deep time". *Paleobiology*, vol. 47(4), pp. 1-17.

Underwood, C.J. and Gunter, G.C. (2012) "The shark *Carcharhinus* sp. from the Middle Eocene of Jamaica

and the Eocene record of *Carcharhinus*", *Caribbean Journal of Earth Sciences*, vol. 44, pp. 25-30.

Underwood, C.J., Ward, D.J., King, C., Antar, S.M., Zalmout, I.S. and Gingerich, P.D. (2011) "Shark and ray faunas in the Middle and Late Eocene of the Fayum Area, Egypt", *Proceedings of the Geologists' Association*, vol. 122, pp. 47-66.

Van Vliet, H.J., Schulp, A., Abu El-Kheir, G., Paijmans, T. and Bosselaers, M. (2017) "A new site with Oligocene terrestrial mammals and an Oligocene selachian fauna from Minqar Tibaghbagh, the Western Desert of Egypt", *Acta Palaeontologica Polonica*, vol. 62, pp. 509-525.

Uyeno, T., Yabumoto, Y. and Kuga, N. (1984) "Fossil Fishes of Ashiya Group -(I) Late Oligocene Elasmobranchs from Island of Ainoshima and Kaijima, Kitakyushu", *Bulletin Kitakyushu Museum History*, vol. 5, pp. 135-142.

Welton, B.J. (2016a) "First report of *Orthechinorhinus* (Squaliformes: Etmopteridae) from the Pacific Basin: A new species from early Oligocene rocks of Oregon, USA", *New Mexico Museum of Natural History and Science Bulletin*, vol. 74, pp. 303-308.

Welton, B.J. (2016b) "A new dalatiid shark (Squaliformes: Dalatiidae) from the early Oligocene of Oregon and California, USA", *New Mexico Museum of Natural History and Science Bulletin*, vol. 74, pp. 289-302.

Welton, B.J. and Goedert, J.L. (2016) "New species of *Somniosus* and *Rhinoscymnus* (Squaliformes: Somniosidae), Deep Water sharks from Oligocene of western Washington State, USA", *New Mexico Museum of Natural History and Science Bulletin*, vol. 74, pp. 309-326.

Yabumoto, Y. and Uyeno, T. (1994) "Late Mesozoic and Cenozoic fish faunas of Japan", *Island Arc*, vol. 3(4), pp. 255-269.

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). "Trends, rhythms, and aberrations in global climate 65 Ma to present", *Science*, vol. 292, pp. 86-693.

CONTRIBUTORS ADDRESS:

Adnet Sylvain

Institut des Sciences de l'Evolution de Montpellier (ISE-M) UMR 5554 CNRS/UM/IRD/EPHE, CC064, Université de Montpellier, Montpellier, France. E-mail: sylvain.adnet@umontpellier.fr, <https://orcid.org/0000-0001-7188-1560> Phone: +33 4 67 14 32 64 * Corresponding author

Cappetta Henri

* In Memoriam of Henri Cappetta, passed away before the final publishing of this article*.

Charpentier Vincent

Inrap, UMR 7041 CNRS, University of Nanterre Nanterre, France. E-mail: vincent.charpentier@inrap.fr, <https://orcid.org/0000-0002-8133-5931>