
GROMA Issue 7 (Archaeopress 2023): 97–106

Using Programming Environments for Academic
Research and Writing

Morgan Lemmer-Webber1*
1Art History, Executive Director of the World History Association,

Director of FOSS & Crafts Studios LLC
*Correspondence: morganlemmerwebber@gmail.com

Presented at the ARCHEO.FOSS XV 2021: Open software, hardware, processes, data,
and format in archaeological research; on-line; November 23rd-26th 2021.

Abstract: Developer tools, such as code editors, markup languages, and revision control have a greater
range of functions than word processors. As a scholar engaged in both Digital Humanities and the
FOSS community, I have become increasingly interested in how these tools can be applied to research
workflows. I wrote my dissertation in the editor Dr. Racket using Scribble, allowing me to incorporate
code directly into my document. In this paper, I discuss the benefits and pitfalls of this decision.

Keywords: Markup languages; Revision control; Digital humanities

FOSS software used and license:
Scribble, MIT license and Apache License v 2.0;
Racket and Dr. Racket, MIT license and the Apache License version 2.0 (some components distributed
under the GNU Lesser General Public License, version 3);
git-annex, AGPL version 3 or higher (parts of git-annex are licensed under the GPL, BSD, and other
licenses);
GNU Emacs, GPL;
LibreOffice, Mozilla Public License v2.0

Open dataset and license:
N/A

Repository and license:
https://mlemmer.org/git/dissertation/, Apache License v2 (non-Scribble racket files) and Creative
Commons Attribution-Share Alike 4.0 International (document files).

Introduction

I have been an active user of free and open source technology for about fifteen years and have
run Linux distributions for the operating system on my primary computer for over a decade.
For most of that time, my free software advocacy and use has run in parallel with little overlap
to my academic studies as an art historian focusing on the art and archaeology of the Roman
Empire. However, when I started getting involved in digital humanities projects, I had more
tangible reasons to incorporate that technology into my academic projects. This article will
discuss my own experiences using programming tools in my research workflow and outline
how these methods could be more broadly applied (fig. 1).

mailto:morganlemmerwebber@gmail.com
https://mlemmer.org/git/dissertation/

98

Morgan Lemmer-Webber

Digital Humanities Workshops

I co-developed and ran a series of digital humanities workshops with my wife, Christine
Lemmer-Webber, to teach the basics of programming to students with no math or computer
science background (Lemmer-Webber and Lemmer-Webber 2018). For these workshops,
we decided to use the programming language Racket (Racket 2022) because it had a code
editor, Dr. Racket, and markup language, Scribble (Scribble 2022), built in. Based on my
own experience learning Python, as well as conversations with other humanities students
about their anxieties around learning programming, we made a conscious effort to tailor the
workshops to minimize those anxieties. The objective of the three-hour workshops was to
give a basic introduction to the concepts of programming with a deliverable skill of writing
an academic paper using Scribble. Christine wrote a programming tutorial that introduced
the basic principles of programming using Racket’s picture language to build a snowman.
We found that using basic geometric shapes as our universal language eased the fears of
some students who thought they wouldn’t be able to code because they did not have a math
background. Since the number of code projects that are accessible within a basic tutorial
that will also have a deliverable outcome relevant to students are fairly limited, I created
a tutorial for using Scribble to write an academic paper. This continued the code elements
of the workshops using a method that is relatively easy to pick up and had the potential for
immediate application.

Figure 1. Morgan Lemmer-Webber’s dissertation workflow as she incorporates notes written on the physical draft of
her dissertation into the scribble sourcecode (right monitor), which is displayed via html in the browser (left monitor).

99

Using Programming Environments for Academic Research and Writing

Dissertation Workflow

Scribble

When it came time to write my dissertation (Lemmer-Webber 2021), I decided to practice what
I preach and use Scribble with Dr. Racket as my primary writing environment. This technology
provided many advantages over standard word processors. As with any markup language,
Scribble made it easier to maintain consistent formatting throughout my dissertation. There
was no risk of pasting in a quote from another source and corrupting the formatting for the
rest of the section, for example. I was able to export to multiple file-formats including HTML
and PDF, from the same source file.

One of the basic features of writing in a code editor that I found most helpful was the ability
to comment out text. This means that the text remains in the source document but does
not export into the final versions of the text. In programming, this is often used for writing
documentation about how your code words or keeping earlier drafts of your code so that you
know what you have already tried. When writing academic work, I used this feature to make to-
do items for myself, add notes to myself, include feedback from my committee members, or to
indicate text that was not immediately relevant but could be useful elsewhere. In a screenshot
of my commercial chapter (fig. 2), you can distinguish the sections that are commented out
with @; and appear in tan. At the bottom of that page is a note from one of my committee
members reminding me to keep the focus on my topic. Near the middle of the page is a table
and paragraph which I subsequently commented out to heed that advice. Having the ability
to keep all of this text in one location allowed me to remain organized without cluttering the
drafts I was sending out to my advisors.

Figure 2. Screenshot of the commercial chapter of my dissertation showing Scribble formatting including
commented out notes, and tags for the index, citations, and tables.

100

Morgan Lemmer-Webber

Since Scribble is associated with the programming language Racket, I was able to code
functions directly into the source document. The document is still effectively Racket code
but when you set the programming language within Dr. Racket to #lang Scribble/doc,
it inverts the typical structure of the programming environment to assume that everything
you input is a string unless you call a function with the @ symbol. Scribble has a wide array
of functions out of the box including bibliography, footnotes, images, and figures. However,
it was intended for students and researchers within the discipline of computer science and
therefore did not have all of the nuances that I needed as a PhD candidate in the humanities.

Luckily, the association with Racket allows for custom code to be built into Scribble documents.
Working with Christine Lemmer-Webber we were able to automate certain functions in ways
that were relevant to my field. The bibliographic style options for Scribble were limited to
those typical of computer science journals and did not have an option appropriate to Art
History or Archaeology. The way the bibliography for Scribble operates relies on creating a
new function for each citation and manually entering the bibliographic information. However,
I also had an existing database of bibliographic metadata for my dissertation references from
the citation manager Zotero and wanted to avoid reduplicating work unnecessarily (Zotero
2022). Since we had to re-create the bibliographic system to meet the requirements of my
field, we developed a Racket program that compiled the bibliography from the XML database
into an output that followed the style guide of the AJA. Like the bibliography, the boilerplate
structure for creating figures includes manually entering the image descriptions. Since I
wanted to be as consistent in the image identifications as possible, we wrote a piece of custom
racket code to draw that information from a CSV database and procedurally generated the
descriptions.

Scribble has an existing structure for compiling a multi-chapter document. In a standard word
processor, this would likely be achieved either by using one large document for the entire
dissertation, which can become cumbersome or by creating individual documents for each
chapter and then manually pasting them into a full draft in the end stages of the process. In
Scribble, you can use the @include-section command to append additional Scribble files
on one master document. In the case of my dissertation, I used the title page as my master
document and appended the individual chapters as well as call other functions that will be
procedurally generated. Functionally, this means that exporting the title page compiles the
whole dissertation including the Scribble files for individual chapters as well as calls functions
to generate the image list, bibliography, and index (fig. 3).

The built-in option to export to PDF is formatted based on conventions in computer science
and did not incorporate an easy way to reset the formatting parameters of the output.
Formatting LaTeX to a specified style guide is already a difficult feat on its own. Formatting
generated LaTeX from a markup language adds a further layer of difficulty. Ultimately, we
were only able to get about 90% of the formatting to output to PDF correctly on export. In
the end, Christine built a separate export option for the Open Document Format or ODF
(Durusau and Svante 2021). Once exported to ODF, I was able to open the document and make
the final small adjustments using the open source word processor LibreOffice (The Document
Foundation 2022).

101

Using Programming Environments for Academic Research and Writing

Revision Control

Since I was already using programming tools for my dissertation, I further enhanced my
workflow by using revision control. This process saves changes to a file incrementally over
time, effectively allowing the user a time-traveling view of document history. For many
academic writers, saving incremental or even periodic changes requires saving each version
of the document with a slightly different file name. This clutters your file system and can be
difficult to navigate to find the specific change you are searching for. Git, the most common
free and open source system for revision control, saves these versions in a separate repository,
leaving only one copy of the document in your file system and prompts you to explain what
changes you’ve made in a commit message (Git 2022). This is not a feature built into Dr. Racket,
nor most standard word processors. It is most typically accessed either through the command
line, or through a platform such as GitHub that offers a graphical user interface. Git can be
used with most text-based file types, so revision control is accessible if you are writing using a
standard word processor. Since Git on its own does not handle images well, I added Git Annex,
a free software revision control system built for large file types, in order to include all of the
files necessary to export my dissertation in the same repository (Git-annex 2022).

Access to Git repositories can be shared with collaborators and track who made changes to a
document and when. This makes them indispensable for team projects. While co-developing
the custom Racket functions for my dissertation it was necessary to commit the code regularly
so that Christine and I were both working with the most recent version. It is worth noting that
this is a very foreign workflow for most people and the command line interface is notoriously
difficult even for many experienced developers, let alone a humanities student. The majority
of work on a dissertation is done alone. When not coding on a regular basis or having another
person reliant on the most recent update, it is much easier to forget to commit your changes

Figure 3. Screenshots of the title page of my dissertation (a) in the Scribble format this serves as the master
document with the separate sections included (b) The HTML output of my dissertation with the title page visible

and the hyperlinked table of contents both below and to the left of the title page.

102

Morgan Lemmer-Webber

even if it is still good practice. In order to compensate for this user oversight, I used a program
called Git Annex Assistant to automatically commit my dissertation files to Git and Git Annex
periodically (Git-annex/assistant 2022).

Obstacles

Unfortunately, achieving these benefits came with its own share of obstacles. While Scribble
on its own has a relatively low barrier to entry for the boilerplate options, it is still higher than
standard word processors. All markup languages are an adjustment, particularly for users who
are acclimated to graphical user interfaces for formatting. With few exceptions, making a single
error in formatting in a standard word processor is unlikely to crash your entire document.
When using a markup language, a single missed closing parentheses or a bracket instead of
a curly bracket will result in an error message and the inability to export your document
until it is fixed. The interface of Dr. Racket does syntax highlighting on functions to indicate
which information is covered within that function and the line where the error occurs will be
highlighted in pink on the right side of the screen. These indicators help locate such bugs as
they occur and are reasonably easy to identify if you are mindful of them as you work. The real
issues arise when you do not catch a bug soon enough, particularly if you have multiple bugs at
once. The best preventative measure against this, in my experience, is to export the document
to HTML once per paragraph written. This way you have a constrained area of text to search for
bugs if the export fails making it more manageable than searching through pages of text.

While novice programmers like myself can absolutely debug Scribble errors, define new
functions and even incorporate simple code into their source documents, for the higher-
level functions and customization I did have to rely on assistance from a more experienced
developer. Without access to such guidance this process would have been stalled and I would
have either been limited to the boilerplate options available in Scribble or given up and
returned to LibreOffice. Before Scribble can be widely adopted by non-programmers, I believe
more infrastructural work needs to be laid out to make the options more adaptable to the
needs of other fields.

Incorporating git and git-annex as someone with minimal development experience likewise
had a steep learning curve. The command line is not an intuitive interface even for many
experienced programmers. For people who have minimal command line experience,
committing to git is more labor and time investment than it is to programmers who commit
code several times daily. Programmers are also more likely to have the command line open
as they test their code, run virtual environments, or perform other routine tasks. When
your daily work does not require the command line, it is difficult to remember to commit
regularly, thus the necessity for a program to auto-commit my dissertation. This workaround
was not without flaws, particularly since the auto-commits do not include commit messages.
I, therefore, sacrificed having an easily navigable repository with messages explaining what
changes were but with those commits happening for a repository with regular commits in
short intervals that are likely to catch more changes but without context clues as to what
those changes were.

While writing my dissertation in Scribble had many benefits, it also added layers of stress to
an already difficult situation. Like most people within academia, I had years of experience

103

Using Programming Environments for Academic Research and Writing

writing papers using a word processor. While a lot of the tasks in that workflow are tedious,
they are at least familiar. Using a markup language introduced unexpected issues that I wasn’t
always able to fix in a timely manner. It is difficult explaining to your committee members
that while italicizing words in foreign languages is a trivial task in a word processor, it was
an export error for my dissertation. Even though none of the text in the exported draft that
I submitted had italics, behind the scenes the correct words were still marked as italic in the
source document but a solution we applied to fix one formatting error somehow corrupted
other areas of formatting. This issue arose because debugging LaTeX output is difficult at
the best of times but debugging auto-generated Latex as an intermediate step between the
markup language (Scribble) and the final document format (PDF) is even more difficult. The
level of complexity here can be inferred by the fact that it was easier, in the end, to write an
entirely new export method to ODF than debug the existing Scribble to LaTeX to PDF exporter.
With a lot of work, we were able to find workarounds for all of these issues by the time I
needed to submit my dissertation but troubleshooting these issues averted my attention away
from writing the content of my dissertation. That being said, this article is an overview of
my own personal experience using these technologies and therefore has a sample set of one.
I have only written one dissertation, and without a control sample, it is hard to say whether
I spent more time trying to debug my encoded dissertation than I would have individually
formatting every image, manually compiling an index and all of the other minutiae that were
successfully automated in my workflow.

Gnu Emacs

When I started working on my dissertation, Dr. Racket and Scribble were the obvious choices of
platform because they were the most familiar programming environment to me. I knew that there
were more powerful programming environments out there but did not anticipate the number of
obstacles that would arise from scaling the tools I knew from a seminar paper to a dissertation. We
realized midway through the process that using a more robust editor such as Gnu Emacs would
have eliminated some of the more difficult obstacles (Gnu Emacs 2022). However, at that point, my
dissertation deadlines were looming too close to completely change my workflow. I began learning
Emacs after I submitted my dissertation and had more free time to invest.

The Emacs programming environment has been consistently used and developed since it
appeared on the scene in 1976. This means that it has accrued a powerful assortment of features
that can adapt to most computing needs (Lemmer-Webber and Lemmer-Webber 2022). This
long history, however, also creates its own barriers. The keyboard shortcuts for Emacs were
developed before the standardized shortcuts we all know today. Instead of using Ctrl-c and Ctrl-v
to ‘copy’ and ‘paste’, for example, you use Ctrl-w and Ctrl-y to ‘kill’ and ‘yank’ (Free Software
Foundation 2016). It has gone through various iterations and I am using Gnu Emacs specifically.
While the program does have a graphical user interface, it was designed to be navigated using
keyboard shortcuts and therefore is less intuitive than many other programs.

Whereas Dr. Racket was created as a programming environment purpose-built for Racket and
Racket-based languages, Emacs has support for most standard and many obscure programming
languages. Therefore you are similarly able to write custom code into your source document,
but you are able to choose your programming language of choice (i.e. python, R, Racket). This
versatility expands to markup languages as well and Emacs is compatible with markdown,

104

Morgan Lemmer-Webber

LaTeX, and HTML, among others and can export to PDF, HTML, LaTeX and ODT. When working
on the Scribble ODF exporter, Christine reverse-engineered and adapted the Emacs ODF
exporter as a template.

Emacs-Org Mode is an organizational system that uses a simple but versatile markup system
that can be used for outlining, task assignment, project planning, and to write text documents
(fig. 4). Since I am currently not writing code on a regular basis, the majority of my tasks
in Emacs have been using either Org Mode or markdown. These tasks vary but include
documents to track my job application process, write updates and manage my personal
website, write tutorials and educational materials, collaborate on outlines for projects, and
manage contracting clients.

The other main aspect of my workflow that Emacs has tremendously improved is Magit, a
git porcelain that is integrated into the Emacs interface (Magit 2022). This means that I can
access a much more intuitive interface for git that is accessible through the same program I
am writing in and doesn’t require a separate terminal or command line interface (fig. 4). It is
far easier to remember to stage and commit changes to a document when it only requires a
handful of keystrokes and a commit message rather than switching interfaces entirely.

Given the nature of this article as a retrospective of my experiences, it felt fitting to write the
article itself in Emacs to expand that experiential aspect. While this brief writing exercise is
far less complex than a dissertation as a whole, it has been an interesting comparison. The
main limitation to this workflow in this particular instance is that instead of a style guide for
the formatting, the editorial board of the ArcheoFOSS conference provided a .docx template
with formatting built in. This means that I am writing the document in Org Mode using Emacs,
exporting it to ODF, then assembling it into the template in LibreOffice.

Figure 4. A screenshot of the outline for this article in Emacs Org Mode visible at the top of the screen, and the
Magit interface to commit the document to Git at the bottom of the screen.

105

Using Programming Environments for Academic Research and Writing

Conclusions

My experience using Scribble to write my dissertation was unique and, in many ways,
experimental. There were learning curves along the way that exceeded most dissertation
experiences. I believe that incorporating these types of programming tools into my research
workflow has greatly enhanced my experience. I was able to hone skills that were applicable
both to my academic career and more broadly marketable while minimizing the list of tedious
tasks that typically overwhelm students at the end stages of the dissertation process. If I were
to go back to the start, I would still begin the learning process with Dr. Racket and Scribble.
Emacs itself is too overwhelming and its user interface too foreign to be a useful entry point
to using programming environments. Having an intermediate stage that has a comparatively
low barrier to entry allowed me to gain the confidence I needed to later take on learning
Emacs. Though, given the limitations we hit with Scribble for a complex document with strict
formatting regulations with my dissertation, I would advise anyone who is contemplating this
approach to take the time to learn a more robust code editor prior to beginning a dissertation-
or book-length project.

I believe that incorporating these types of programming tools into research workflows has
significant merit and broad application. While the custom features written into my dissertation
were primarily intended to automate the processes, which are tedious and time-consuming,
the ability to write custom code into a source document has an infinite number of applications
for projects whose needs exceed standard word processors. Projects that involve large
amounts of data analysis, for example, could write these functions directly into their source
file rather than compiling the information elsewhere and then incorporating it. A project that
compiles data from a changing or fluctuating pool of information, such as annual reports for
an excavation, could create a custom template that auto-generates the annual statistics into a
consistent format. Any project which requires multiple users to edit a document could benefit
from revision control which monitors who made changes, when, and preserves older copies of
the document in the event that an error is made. Furthermore, having a publicly available git
repository where the data, source code, methods, and reports are available greatly increases
reproducibility. While digital tools and processes have increasingly revolutionized the way
that data and research is interpreted, visualized, and shared, the writing workflow for many
scholars has remained relatively unchanged. Imagine how much more we could achieve if we
think outside of the .docx.

Supplementary Materials: As the hosts of the podcast FOSS and Crafts, Christine and I have
recorded episodes about many of the themes covered in this article. The following are available
online at https://fossandcrafts.org, Podcast S1: Digital Humanities Workshops, Podcast S2:
Scribble and the Open Document Format, Podcast S3: Learning Emacs.

Funding: This research received no external funding.

Acknowledgments: I am deeply indebted to my wife, Christine Lemmer-Webber, for her
assistance in developing the custom code embedded into my dissertation as well as her work
co-developing the digital humanities workshops and the podcast FOSS and Crafts.

https://fossandcrafts.org

106

Morgan Lemmer-Webber

References

The Document Foundation. 2022. “LibreOffice.” Accessed February 28, 2022. https://www.
libreoffice.org/.

Durusau, P. and S.Schubert (eds). 2021. “OASIS Open Document Format for Office Applications
(OpenDocument) TC v1.3.” Accessed February 28, 2022. https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=office.

Free Software Foundation. 2016. “GNU Emacs manual.” Accessed February 28, 2022. https://
www.gnu.org/software/emacs/manual/emacs.html.

“Git – fast-version-control.” 2022. Accessed February 28, 2022. https://git-scm.com/.
“Git-annex.” 2022. Accessed February 27, 2022. https://git-annex.branchable.com/.
“Git-annex/assistant.” 2022. Accessed February 27, 2022. https://git-annex.branchable.com/

assistant/.
“Gnu Emacs.” 2022. Accessed February 27, 2022. https://www.gnu.org/software/emacs/.
Lemmer-Webber, C. and M. Lemmer-Webber. 2020. “Scribble and the Open Document Format”

Podcast episode. FOSS and Crafts, November 5, 2020. https://fossandcrafts.org/episodes/15-
Scribble-and-the-open-document-format.html.

Lemmer-Webber, C. and M. Lemmer-Webber. 2022. “Learning Emacs.” Podcast episode. FOSS
and Crafts, February 5, 2022. https://fossandcrafts.org/episodes/41-learning-emacs.html.

Lemmer-Webber, M.. 2021. “Women and Wool Working in the Roman Empire.” Doctoral
Dissertation, University of Wisconsin Madison. https://mlemmer.org/dissertation/

“Magit, A Git Porcelain inside Emacs.” 2022. Accessed February 27, 2022. https://magit.vc/.
“Racket, the Programming Language.” 2022. Accessed February 27, 2022, https://racket-lang.

org/.
“Scribble: The Racket Documentation Tool.” 2022. Accessed February 27, 2022. https://docs.

racket-lang.org/Scribble/.
“Zotero, Your personal research assistant.” 2022. Accessed February 27, 2022. https://www.

zotero.org/.

Florian Thiery and Allard W. Mees

https://www.libreoffice.org/
https://www.libreoffice.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
https://www.gnu.org/software/emacs/manual/emacs.html
https://www.gnu.org/software/emacs/manual/emacs.html
https://git-scm.com/
https://git-annex.branchable.com/
https://git-annex.branchable.com/assistant/
https://git-annex.branchable.com/assistant/
https://www.gnu.org/software/emacs/
https://fossandcrafts.org/episodes/15-Scribble-and-the-open-document-format.html
https://fossandcrafts.org/episodes/15-Scribble-and-the-open-document-format.html
https://fossandcrafts.org/episodes/41-learning-emacs.html
https://mlemmer.org/dissertation/
https://magit.vc/
https://racket-lang.org/
https://racket-lang.org/
https://docs.racket-lang.org/Scribble/
https://docs.racket-lang.org/Scribble/
https://www.zotero.org/
https://www.zotero.org/

