The Kotroni Archaeological Research Project (KASP): evaluating ancient Aphidna using multimodal landscape analysis

Authors

  • Athos Agapiou Department of Civil Engineering and Geomatics, Cyprus University of Technology
  • Anastasia Dakouri-Hild Department of Art, University of Virginia
  • Stephen Davis School of Archaeology, University College Dublin
  • Eleni Andrikou Ephorate of Antiquities of East Attica
  • William Rourk Clemons Library, University of Virginia

DOI:

https://doi.org/10.32028/jga.v7i.1722

Abstract

The Kotroni Archaeological Research Project (KASP) seeks to understand the relationship between the natural and human landscape of Aphidna from prehistory through to the present, and how such rural communities contributed to the economic, social and cultural life of larger, ‘core’ centres in the region. As one of the constitutional demes of Classical Athens, Aphidna was steeped in the foundational history of the Athenian polis, which saw in it a primordial, ancestral place tied to myths and legends. It accommodated a Middle Bronze Age cemetery, a Mycenaean/Late Bronze Age citadel, a Classical-Hellenistic fort on the citadel, and a Geometric, Archaic, Hellenistic, and Roman settlement. Furthermore, it was later settled in the form of Byzantine and Frankish monastery estates, Turkish chifliks, Arvanite villages, and the contemporary community of nearby Kapandriti. Being that the area of interest (AOI) is both remarkably well preserved due to construction prohibitions necessitated by the nearby Marathon water reservoir and features a diverse history spanning four millennia, it is an excellent case-study for human landscape inquiry, i.e. understanding diachronic inhabitation and the changing meanings of landscape in the longue durée. Important tasks in this direction include clarifying the spatial extent, chronological framework, and nature of settlement as well as the environmental affordances of the landscape, the combination of which permits a thick description of its cultural history. The main method for this investigation is intensive pedestrian survey. Additional conventional methods include the study of ground historical photographs, conventional maps, older field reports, published scholarship, ancient literature and inscription corpora, traveller accounts (17th-19th century AD), in situ buildings or architectural membra dispersed in the landscape, and artefacts (both those collected during the survey and legacy finds in museum storage, e.g. the National Archaeological Museum). Science-based methods consist of geophysical prospection, geological/geomorphological study, optically stimulated luminescence (OSL) analysis, as well as geospatial informatics focusing on satellite and aerial imagery and Lidar-derived digital terrain models. The results of the intensive survey, the geophysical prospection, and the geological/geomorphological and OSL study are presented elsewhere. In this paper we present the outcomes of remote sensing, arguing that the relevant tools play an important role in the study of human landscapes at all stages of archaeological inquiry (prior, during and after ground truthing), especially when revisiting underexplored areas and employing a multimodal ‘third-wave’ survey methodology. The latter weaves in a multitude of analyses, both conventional and digital, and integrates old and new data.

References

Agapiou, A. 2017. Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. International Journal of Digital Earth 10 (1): 85-102.

Agapiou, A., D.D. Alexakis, A. Sarris, and D.G. Hadjimitsis 2013. Orthogonal equations of multi-spectral satellite imagery for the identification of unexcavated archaeological sites. Remote Sensing 5 (12): 6560-6586.

Agapiou, A., A. Dakouri-Hild, S. Davis, W. Rourk 2021. Evaluating an ancient landscape using remote sensing: the Kotroni Archaeological Survey Project (KASP), Computer Applications in Archaeology 2021: Digital Crossroads (online, 14-18 June 2021).

Agapiou, A., D.G. Hadjimitsis, D.D. Alexakis 2012. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sensing 4 (12): 3892-3919.

Agapiou A. and V. Lysandrou 2015, Remote sensing archaeology: tracking and mapping evolution in scientific literature from 1999-2015. Journal of Archaeological Science: Reports 4: 192-200.

Attema, P., Bintliff, J., van Leusen, M., Bes, P., de Haas, T., Donev, D., Jongman, W., Kaptijn, E., Mayoral, V., Menchelli, S., Pasquinucci, M., Rosen, S., García Sánchez, J., Gutierrez Soler, L., Stone, D., Tol, G., Vermeulen, F., and Vionis, A. 2020. A guide to good practice in Mediterranean surface survey projects. Journal of Greek Archaeology 5: 1-62.

Barnes, I. 2003. Aerial remote-sensing techniques used in the management of archaeological monuments on the British Army’s Salisbury Plain Training Area, Wiltshire, UK. Archaeological Prospection 10 (2): 83-90.

Bewley, R.H., D. Donoghue, V. Gaffney, M. Van Leusen, and A. Wise 1999. Archiving Aerial Photography and Remote Sensing Data: a Guide to Good Practice. Archaeology Data Service: Oxbow.

Bewley, R.H., S.P. Crutchley, and C.A. Shell 2005. New light on an ancient landscape: Lidar survey in the Stonehenge World Heritage site. Antiquity 79 (305): 636-647.

Campana, S. 2016. Sensing ruralscapes: third-wave archaeological survey in the Mediterranean area, in M. Forte and S. Campana (eds) Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing: 113-145. Berlin: Springer.

Campana, S. and M. Forte 2006 (eds). From Space to Place: 2nd International Conference on Remote Sensing in Archaeology: Proceedings of the 2nd International Workshop (CNR, Rome, Italy, December 4-7, 2006) (British Archaeological Reports International Series 1568). Oxford: Archaeopress.

Campana, S. and R. Francovich 2007. Understanding archaeological landscapes: steps towards an improved integration of survey methods in the reconstruction of subsurface sites in south Tuscany, in J. Wiseman and F. El-Baz (eds) Remote Sensing in Archaeology: 239-261. Berlin: Springer.

Capper, J.E. 1907. Photographs of Stonehenge as seen from a war balloon. Archaeologia 60: 571.

Cerra, D., A. Agapiou, R.M. Cavalli, and A. Sarris 2018. An objective assessment of hyperspectral indicators for the detection of buried archaeological relics. Remote Sensing 10 (4): 500.

Challis, K., P. Forlin, and M. Kincey 2011. A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data. Archaeological Prospection 18: 279-289.

Corns, A. and R. Shaw 2009. High resolution 3-dimensional documentation of archaeological monuments and landscapes using airborne Lidar. Journal of Cultural Heritage 10: 72-77.

Crist, E.P. and R.J. Kauth 1986. The tasseled cap de-mystified. Photogrammetic Engineering and Remote Sensing 52 (1): 81-86.

Crutchley, S. 2018. The Light Fantastic: Using Airborne Laser Scanning in Archaeological Survey. Swindon: English Heritage.

Curtius, E. and J.A. Kaupert 1895-1903. Karten Von Attika. Berlin: Reimer.

Dakouri-Hild, A., A. Agapiou, E. Andrikou, P. Bes, X. Charalambidou, M. Chidiroglou, S. Davis, T. Kinnaird, K. Sarri and A. Yangaki 2021. The cultural life of an Attic landscape: visualizing patterns of habitation at Aphidna, Greece, using multimodal landscape analysis, in Mapping Settlement Desertion in Southeastern Europe from Antiquity to the Modern Era, National Hellenic Research Foundation Conference (online, 22-23 April 2021).

Dakouri-Hild, A., A. Agapiou, E. Andrikou, P. Bes, X. Charalambidou, M. Chidiroglou, S. Davis, T. Kinnaird, W. Rourk, K. Sarri, and A. Yangaki in press a. The Kotroni Archaeological Survey Project (KASP) at ancient Aphidna in northern Attica: results of the first season (2019). Archaeologikon Deltion B1.

Dakouri-Hild, A, A. Agapiou, E. Andrikou, P. Bes, X. Charalambidou, M. Chidiroglou, S. Davis, T. Kinnaird, W. Rourk, K. Sarri, and A. Yangaki in press b. The Kotroni Archaeological Survey Project (KASP) at ancient Aphidna in northern Attica: results of the second season (2021). Archaeologikon Deltion B1.

Davis, S., A. Agapiou, A. Dakouri-Hild, and W. Rourk 2019. The Kotroni Archaeological Survey Project: aerial approaches and initial results, in Revisiting the Gaps: Empty Spaces in the Theory and Practice of Aerial Archaeology, Aerial Archaeology Research Group Annual Conference (Constanța, Romania, 12-14 September 2019).

Davis, S., A. Agapiou, A. Dakouri-Hild, and W. Rourk 2021. Remote sensing and the Kotroni Archaeological Survey Project (KASP), 40th International Mediterranean Survey (IMS) Conference: Remote Sensing, Ecology and Heritage Management, Organised by Mimar Sinan Fine Arts University and the Deutsches Archäologisches Institut in Istanbul (online, 4-5 June 2021).

Devereux, B.J., G.S. Amable, and P. Crow 2008. Visualisation of Lidar terrain models for archaeological feature detection. Antiquity 82 (16): 470-479.

Finlay, G. 1838. Remarks on the Topography of Oropia and Diacria With a Map. Athens: Antoniades.

Fontana, G. 2022. Italy’s hidden hillforts: a large-scale Lidar-based mapping of Samnium. Journal of Field Archaeology 47 (4): 245-261.

Forsén, J. 2010. Aphidna in Attica revisited, in A.P. Touchais et al. (eds) Mesoelladika. La Grèce continentale au Bronze Moyen. Actes du colloque international organisé par L’École française d’Athènes en collaboration avec l’American School of Classical Studies at Athens et le Netherlands Institute at Athens, Athènes, 8-12 mars 2006: 223-234. Paris: École française d’ Athènes.

Geertz, C. 1973. The Interpretation of Cultures, New York: Basic Books.

Gell, W. 1827. The Itinerary of Greece Containing One Hundred Routes in Attica, Boeotia, Phocis, Locris and Thessaly. London: Rodwell and Martin.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore 2017. Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18-27.

Hekimoglou, E. 2014. Υδάτινη Ιστοριογραφία. Athens: EYDAP.

Hesse, R. 2010. Lidar-derived local relief models – a new tool for archaeological prospection. Archaeological Prospection 17: 67-72.

Hielte-Stavropoulou, M. and M. Wedde 2002. Sam Wide’s excavation at Aphidna -stratigraphy and finds, in R. Hägg (ed.) Peloponnesian Sanctuaries and Cults. Proceedings of the 9th International Symposium at the Swedish Institute at Athens, 11-13 June 1994: 21-24. Stockholm: Svenska institutet i Athen.

Hope Simpson, R. and O.T.P.K. Dickinson 1979. A Gazeteer of Aegean Civilisation in the Bronze Age, vol I: the Mainland and Islands. Göteborg: Åstrom.

Kinnaird, T., E. Andrikou, A. Dakouri-Hild, S. Davis, and A. Srivastava in prep. Optically stimulated luminescence and the examination of earthworks at ancient Aphidna: the Kotroni Archaeological Survey Project (KASP).

Kokalj, Ž. and R. Hesse 2017. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Ljubljana: Založba ZRC.

Kokalj, Ž., K. Zakšek, and K. Oštir 2011. Application of sky-view factor for the visualization of historic landscape features in Lidar-derived relief models. Antiquity 85 (327): 263-273.

Laet, de V., E. Paulissen, and M. Waelkens 2007. Methods for the extraction of archaeological features from very high-resolution IKONOS-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science 34: 830-841.

Lasaponara, R. and N. Masini 2007. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. Journal of Archaeological Science 34: 214-221.

Lasaponara, R. and N. Masini 2012. Pan-sharpening techniques to enhance archaeological marks: an overview, in R. Lasaponara and N. Masini (eds) Satellite Remote Sensing: a New Tool for Archaeology: 87-109. Dordtrecht: Springer.

Lauricella, A., J. Cannon, S. Branting, and E. Hammer 2017. Semi-automated detection of looting in Afghanistan using multispectral imagery and principal component analysis. Antiquity 91 (359): 1344-1355.

Leake, W.M. 1841. Demi of Attica. London: Rodwell.

Luo, L., X. Wang, H. Guo, R. Lasaponara, X. Zong, N. Masini, G. Wang, P. Shi, H. Khatteli, F. Chen, S. Tariq, J. Shao, N. Bachagha, R. Yang, and Y. Yao 2019. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907-2017). Remote Sensing of Environment 232: 111-280.

Maktav, D., J. Crow, C. Kolay, B. Yegen, B. Onoz, F. Sunar, G. Coskun, H. Karadogan, M. Cakan, I. Akar, C. Uysal, D. Gucluer, B. Geze and G. Ince 2009. Integration of remote sensing and GIS for archaeological investigations. International Journal of Remote Sensing 30 (7): 1663-1673.

McCredie, J.R. 1966. Fortified Military Camps in Attica. Princeton: American School of Classical Studies at Athens.

McGary, S., E. Andrikou, A. Dakouri-Hild, and S. Davis in prep. Geophysical prospection at ancient Aphidna: the Kotroni Archaeological Survey Project (KASP).

Megarry, W. and S.R. Davis 2013. Beyond the bend: remotely sensed data and archaeological site prospection in the Boyne Valley, Ireland, in D. Comer and M. Harrower (eds) Mapping Archaeological Landscapes from Space. New York: Springer.

Opitz, R.S. and D.C. Cowley 2013. Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation. Oxford: Oxbow.

Papadimitriou-Grammenou, A., P. Georgiou-Gkeka and P. Petridis 2007. Preliminary presentation. Ανασκαφή και Έρευνα VI: 76-77 (unpublished).

Papadopoulou, C. 2017. Kapandriti -Kotroni hill, BCH-BSA Chronique des Fouilles en Ligne 6137 (online).

Parcak, S. and C.A. Tuttle 2016. Hiding in plain sight: the discovery of a new monumental structure at Petra, Jordan, using Worldview1 and Worldview2 satellite imagery. Bulletin of the American Schools of Oriental Research 375: 35-51.

Philip, G., D.N.M. Donoghue, A.R. Beck, and N. Galiatsatos 2002. CORONA satellite photography: an archaeological application from the Middle East. Antiquity 76 (291): 109-118.

Pitt, R. 2011. Kotroni anc. Aphidnai, BCH-BSA Chronique des Fouilles en Ligne 2002 (online).

Pitt, R. 2012. Kapandriti, Kotroni hill, BCH-BSA Chronique des Fouilles en Ligne 2476 (online).

Riley, D.N. 1987. Air Photography and Archaeology. London: Duckworth.

Rouse, J.W., R.H. Haas, J.A. Schell, D.W. Deering, and J.C. Harlan 1974. Monitoring the Vernal Advancements and Retrogradation (Greenwave Effect) of Nature Vegetation (NASA/GSFC Final Report). Greenbelt: NASA.

JSanchez, J.G. 2018. Archaeological LiDAR in Italy: enhancing research with publicly available data. Antiquity 92 (364): E4.

Sarris, A., N. Papadopoulos, A. Agapiou, M.C. Salvi, D.G. Hadjimitsis, W.A. Parkinson, R.W. Yerkes, A. Gyucha, and P.R. Duffy 2013. Integration of geophysical surveys, ground hyperspectral measurements, aerial and satellite imagery for archaeological prospection of prehistoric sites: the case study of Vésztő-Mágor Tell, Hungary. Journal of Archaeological Science 40: 1454-1470.

Sittler, B., H. Weinacker, M. Gültlinger, and L. Koupaliantz 2007. The potential of Lidar in assessing elements of cultural heritage hidden under forests, in Z. Bochenek (ed.) New Developments and Challenges in Remote Sensing: 539-548. Rotterdam: Millpress.

Skoufopoulos, N. 1971. Mycenaean Citadels. Åström: Göteborg.

Spon, J. and G. Wheler 1682. A Journey Into Greece, Book VI: Several Journeys from Athens, Into Attica, Corinth, Boeotia, etc. London: Cademan, Kettlewell, and Churchill.

Touchais, A. 2009. Kapandriti-Aphidna, BCH-BSA Chronique des Fouilles en Ligne 95 (online).

White, D.C., M. Williams, and S.L. Barr 2008. Detecting sub-surface soil disturbance using hyperspectral first derivative band rations of associated vegetation stress. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII: 243-248.

Wide, S. 1896. Aphidna in Nordattika. Athenische Mitteilungen 21: 385-409.

Yarbrough, L.D., K. Navulur, and R. Ravi 2014. Presentation of the Kauth-Thomas transform for Worldview2 reflectance data. Remote Sensing Letters 5 (2): 131-138.

Zakšek, K., K. Oštir, and Ž. Kokalj 2011. Sky-view factor as a relief visualization technique. Remote Sensing 3 (2): 398-415.

Published

23/11/2022

How to Cite

Agapiou, A., Dakouri-Hild, A., Davis, S., Andrikou, E., & Rourk, W. (2022). The Kotroni Archaeological Research Project (KASP): evaluating ancient Aphidna using multimodal landscape analysis. Journal of Greek Archaeology, 7, 413–434. https://doi.org/10.32028/jga.v7i.1722

Issue

Section

Multiperiod