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Introduction

The introduction of airborne laser scanning (ALS) or lidar into the archaeologist’s ever-expanding 
toolkit has profoundly impacted our understanding of premodern landscapes. Most notably used 
for the detection of archaeological sites in densely vegetated environments, airborne lidar has been 
an effective tool for recording the surface topography of a landscape beneath the upper canopies of 
forests or jungles.1 While the collection of aerial lidar data for archaeology has traditionally required 
significant funding and collaboration with specialist firms, recent developments in lightweight 
and affordable sensors mounted on unmanned aerial vehicles (UAVs) or drones have increased 
access to lidar data collection. With drone lidar, archaeologists can now capture smaller areas of 
interest at much higher resolutions than traditional airborne lidar, enabling precise and efficient 
documentation of landscapes with complex topography or ephemeral archaeological features. 
With readily available lidar sensors and medium-payload consumer drones, archaeologists are now 
able to bring lidar data from new regions into dialogue with more established zones of lidar-based 
research. Additionally, the higher resolution afforded by low-altitude flights and direct control 
over data collection enables archaeologists to explore innovative applications of aerial lidar and 
pose new questions about premodern landscapes.

While well-defined workflows exist for collecting, processing, and analyzing lidar data captured 
by airplane,2 the growing use of drone lidar lacks equivalent critical evaluation. To date, there is 
no established best practice for using drone lidar in Mediterranean contexts, where data quality 
can vary greatly due to differences in resolution and ground cover. The need for a critical review 
of drone lidar methods in this context is particularly relevant because – unlike professionally 
processed lidar data collected by airplane – the proliferation of drone based lidar packages has led 

1	  Vinci et al. 2024.
2	  Comprehensive guidelines for best general practices for airborne lidar for archaeological data collection and analysis have recently 
been published by the European Archaeological Consilium (Bennett and Cowley 2025).
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to an increased rate of data collection, processing, and analysis by archaeologists who are not lidar 
specialists.

This paper critically reviews a range of methodologies for drone lidar data collection and 
processing in Mediterranean archaeology, providing a systematic evaluation of their effectiveness 
for recording surface topography.3 To contextualize these findings, the results are compared to 
those of drone photogrammetry, a more ubiquitous, established, and cost-effective method. The 
primary case study examines data collected by the Naxos Quarry Project, an interdisciplinary 
survey of ancient marble quarries on the Cycladic island of Naxos in an area characterized by 
diverse vegetation, complex topography, and varied anthropogenic features (Figure 1, area 1). 
These findings are contrasted with data from the coastal Iron Age funerary landscape of Mølen 
in southern Norway, a non-Mediterranean environment with comparable vegetation profiles and 
similarly complex archaeological features (Figure 1, area 2). A multi-year campaign of lidar data 
collection at Mølen highlights the effectiveness of these data for mapping physical change over 
the long term at high resolution. Comparing data between Naxos and Norway offers key insight 
into the particularities of drone lidar data for archaeological documentation and the need to 

3	  While this study focuses solely on the viability of available data collection strategies, classification algorithms, and software packages 
for low-altitude remote sensing of sparsely vegetated archaeological landscapes, we note the need for a similar review of the 
visualization and analysis of the resultant rasterized digital elevation models remains beyond the scope of the paper. Existing initiatives 
for archaeological raster analysis, like the open-source Relief Visualization Toolbox (RVT), offer useful and well-tested tools for lidar-
based elevation models. As is the case for classification models, however, these tools are specifically designed for coarser airborne 
datasets. We encourage future efforts to focus on how such visualization tools can be optimized for the additional requirements of 
high-resolution elevation models.

Figure 1. Study areas for this paper including 1) Naxos, Greece and 2) Mølen, Norway
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adopt workflows that are appropriate for both the region where one works and the mode of data 
collection in use.

Background: aerial data in archaeology and the development of drone lidar

Traditional uses of aerial photography and remote sensing in archaeological fieldwork include feature 
identification and site documentation using orthorectified photographs from airplane, balloon, or 
satellite, while multispectral or thermal imagery has been used to document environmental factors 
or subsurface architectural features.4 Advances in aerial lidar for archaeological documentation in 
highly vegetated environments like jungles and boreal forests have illuminated expansive remains 
in previously undocumented or understudied parts of the Americas,5 Europe,6 and Southeast Asia.7 
Widespread news coverage and public interest in these studies has served to popularize aerial 
lidar, leading to increased funding for projects that integrate lidar prospection into their broader 
fieldwork strategies.8 This has encouraged archaeologists to develop use cases for lidar in diverse 
landscape types, ecosystems, and for a wider range of applications than its well-known ability to 
penetrate vegetation.9

While earlier archaeological projects required significant funding to commission aerial lidar data 
collection, increasing access to countrywide open source lidar datasets in North America and 
Europe has prompted the development of several large-scale systematic studies with a range of 
research questions that have reshaped our understanding of human activities in these regions.10 
Meanwhile, the lack of comparable datasets for archaeologists working in African, South American, 
Asian, or Eastern Mediterranean contexts has resulted in an uneven application of lidar in these 
regions, with particular implications for local cultural heritage management and archaeological 
services and broader implications on the development of comparative, multiregional datasets.11

Archaeologists have most commonly engaged with lidar datasets collected by airplane at relatively 
high altitudes, maximizing the spatial coverage of a particular collection for a given budget and 
pushing lidar-focused archaeological study toward macro-regional or regional study areas.12 While 
data collection strategies vary, the average resultant resolution of elevation data with which 
archaeologists actually engage is close to 1m,13 representing a substantial increase in data quality 
from the radar-derived orbital elevation or visual datasets most often employed for archaeological 
study.14 At this resolution, archaeologists have used lidar to accurately map complex networks 
of agricultural terracing, road networks, urban architecture, water management systems, and 

4	  Bewley 2003.
5	  Canuto et al. 2018; Prümers et al. 2022.
6	  Norstedt et al. 2020; Bernardini and Vinci 2020.
7	  Evans et al. 2013; Evans 2016; Chevance et al. 2019.
8	  See Handwerk 2022 reporting on Prümers et al. 2022, Rannard 2024, reporting on Auld-Thomas et al. 2024, and Georgiou 2024, 
reporting on Frachetti et al. 2024.
9	  Recent studies have demonstrated the efficacy of airborne lidar for site detection in sparsely vegetated upland or mountainous areas 
of Italy (Fontana 2022) and Uzbekistan (Frachetti et al. 2024), the development of green lidar for bathymetric mapping offers the 
opportunity to detect underwater archaeological sites (Hale et al. 2023.), and an increasing number of projects are training machine 
learning algorithms with lidar data for the predictive modeling of archaeological landscapes (Verschoof-van der Vaart et al. 2020; Cody 
and Anderson 2021; Guyot et al. 2021; Carleton et al. 2023).
10	  See Vinci et al. 2024 for a review of open access countrywide lidar datasets and the implications for these data on archaeological 
research.
11	  Uneven access to funding, equipment, and open access datasets has led to imbalances in the global adoption of these tools and the 
development of a so-called ‘lidar elite’ in some regions (Cohen et al. 2020: 78).
12	  In mediterranean contexts, Fontana 2025 offers a thorough review of the effectiveness of lidar analysis on a macro-regional 
(15,296 km2) study area using 1m2 resolution elevation data, while Sporn and Kennedy in this volume (735 km2 at 0.25 m2 resolution), 
Fachard et al. in this volume (200 km2 at 0.25 m2 resolution), and Matsas, et al. in this volume (80 km2 at 0.25 m2 resolution) each 
present case studies for the application of high altitude aerial lidar for smaller regional study areas as commonly deployed in Greek 
archaeological contexts.
13	  The 291 archaeological projects reviewed by Vinci et al. 2024 presented an average study area of 1518 km2, an average lidar ppm 
sampling strategy of 33.1, leading to an average topographic data resolution of 1.1m. While this study is not entirely comprehensive, it 
is representative of the most common resolution ranges of aerially collected lidar datasets used in archaeological research.
14	  At present, 3m elevation data collected by the Italian Space Agency’s COSMO-SkyMed Synthetic Aperture Radar (SAR) represents the 
highest resolution widely accessible orbital elevation dataset that has been utilized for archaeological research (Tapete et al. 2021). 

Evan I. Levine, Hallvard Indgjerd, Magne Samdal and  Steinar Kristensen



167

High-resolution drone lidar for Mediterranean archaeology

other anthropic features at a speed and scale that was previously unimaginable. Lidar analysis 
at this scale is most effective at recognizing and documenting relatively large, regular features 
with linear or ovoid characteristics like terraces or large enclosures.15 The co-development of a 
rigorous ground truthing research plan is a critical component in the accurate identification and 
interpretation of identified features and patterns.16 

While most archaeological lidar projects make use of more established aerial platforms for data 
collection, several recent studies have highlighted the utility and benefits of drone lidar for site 
documentation and prospection. This accompanies the almost ubiquitous adoption of drones for 
a wide range of archaeological documentation techniques. Following pioneering work on drone 
photogrammetry by Eisenbeiss and colleagues, drone imagery has enriched, facilitated, and 
democratized aerial documentation by archaeologists.17 This phenomenon was prompted by rapid 
developments in multi-rotor consumer drone technology and increasingly intuitive user interfaces 
and flight planning software packages throughout the 2010s.18 These developments encouraged a 
fundamental shift in the use of these tools from specialist or hobbyist communities to widespread 
use – offering archaeologists a low-cost, quick, and relatively straightforward option to collect 
project-specific, high quality aerial data.19 Two parallel developments were instrumental in the 
widespread adoption of drones for archaeological data collection: (1) increasing access to low cost 
GNSS hardware like DGPS units allowed these data to be accurately georeferenced across entire 
landscapes;20 and (2) parallel developments in 3D modeling software based on the principles of 
photogrammetry meant that the photographs collected by consumer drones could be quickly 
and easily processed to record landscapes, structures, and excavations in three dimensions with 
an unprecedented level of data quality.21 Together, these tools offer archaeologists the ability to 
generate rasterized data like orthorectified photomosaics and digital elevation models that could 
be integrated into fieldwork-related GIS projects.

The earliest adoption of drone lidar for archaeology took place in densely vegetated jungle or 
forest environments in Mesoamerican, Amazonian, and northern European contexts, where aerial 
lidar has been shown to be most effective.22 While these early studies highlighted the research 
and documentation potential of the increased resolution of lower altitude drone lidar, the 
costs of these platforms and limitations in processing power and battery capacity limited their 
potential for widespread adoption. The adoption of these tools for archaeological prospection and 
documentation in Mediterranean environments is a more recent phenomenon, with experimental 
studies testing the efficacy of drone lidar to penetrate the low, thick vegetation encountered in 
Italian contexts and the implications for these methods elsewhere in the region.23 In each case, these 
studies are presented as preliminary and exploratory, focused on the documentation of relatively 
large-scale architecture at known sites beneath high vegetation. In so doing, they deploy drone 
lidar platforms for a similar purpose as aerial lidar at a smaller scale with an increased resolution. 
By contrast, the papers collected in this volume highlight the variance in data collected by aerial 
and drone lidar, making use of the increased resolution, greater control over data collection and 
processing, and limitations in areal coverage to ask new questions that are more appropriate for 
data of this scale, resolution, and type.24

15	  Knodell et al., in this volume.
16	  Garrison et al. 2023; Manquen et al. in this volume. 
17	  Eisenbeiss et al. 2005; Eisenbeiss and Zhang 2006.
18	  The release of the Phantom quadcopter by DJI in 2013 marked a fundamental shift in access to high quality and reliable UAV platforms 
with simple and intuitive user interfaces. 
19	  Hill 2019.
20	  Hill et al. 2019.
21	  Sapirstein and Murray 2017.
22	  Khan et al. 2013; Risbøl and Gustavsen 2018; Murtha et al. 2019; McCoy et al. 2021. 
23	  Balsi et al. 2021; Calderone et al. 2024.
24	  See Garcia Sanchez et al. in this volume on Valley of the Muses; Pike et al. in this volume on Mt Pentele; Waagen et al. this volume on 
Halos.
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Methods and equipment

Technical specifications and data collection

Data for both case studies were collected using two DJI quadcopter platforms: the Matrice 300 
and the Mavic 3 Enterprise. The Matrice 300 was equipped with the Zenmuse L1 lidar module, 
which incorporates a 20-megapixel optical sensor for concurrent RGB photography (Figure 2). This 
combination provides a compact, flexible, and relatively low-cost solution for lidar data capture. 
However, its takeoff weight of 7.2 kg and wingspan of just over a meter require additional operator 
licensing, and it is less mobile compared to the 951g Mavic 3, which is equipped with a 20-megapixel 
wide-angle lens for RGB photography.

The L1’s Livox Mid-70 lidar sensor can record up to three target echoes (returns) at a collection 
rate of 480 KHz, with two or three returns per point.25 Automated flight paths can be calculated and 
executed from the DJI flight controller software, in addition to sensor calibration patterns based 
on the pilot’s requested parameters for area coverage, resolution, overlap, and flight speed. SRTM 
elevation data with 30m resolution was downloaded to make use of consistent above ground level 
(AGL) altitude data collection. However, flights at low altitude and in areas with steep topographic 
change meant that SRTM data were in some cases too coarse to provide reliable AGL flight plans, 
and consistent altitude flights were subsequently employed. 

25	  DJI, 2023: 5.

Figure 2. Equipment used for this study (clockwise from top left): DJI Matrice 300 RTK, DJI Mavic 3E RTK, Emlid Reach RS3 
GNSS RTK as a rover for field survey, Emlid Reach RS2 GNSS RTK as a base
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Figure 3. UAV data collection and point cloud processing workflow

Both UAVs were equipped with Real-Time Kinematic (RTK) GNSS positioning systems, which 
enabled accurate recording of the sensor’s position within 2–3cm without the need for Ground 
Control Points (GCPs) or any post-processing.26 On Naxos, RTK corrections were provided by an ad-
hoc base station set up with an Emlid Reach RS2 GNSS receiver broadcasting NTRIP data via Emlid’s 
NTRIP Caster software. An Emlid Reach RS3 receiver, receiving the same corrections, was used for 
terrestrial measurements of coded photogrammetry targets, which served as GCPs to assess RTK 
reliability and provide additional accuracy control. At Mølen, correction data was provided by 
the Norwegian Mapping Authority’s CPOS positioning service which calculates a virtual reference 
station based on permanent geodetic stations.27 

Data processing workflow

Like most commercial lidar sensors, the L1 collects data in a proprietary format that requires 
the use of DJI Terra software for initial processing and export into common point data formats.28 
In the first step of the study, data for each flight were exported with minimal changes as LAS 
point clouds, providing a baseline dataset for evaluation of different processing methods (Figure 
3). Photogrammetry data went through pre-processing in Agisoft Metashape, which consisted of 
image alignment, reference point input, alignment optimization and point cloud generation, all at 
the ‘high’ quality setting. The resulting point clouds were then exported as LAS files. Comparative 
lidar datasets from Mølen were downloaded from the public Norwegian lidar and elevation data 
repository, Høydedata,29 and from the Norwegian Institute for Cultural Heritage Research (NIKU).

Point clouds consist of unorganized, dimensionless points with a position in 3D space given as 
Cartesian X, Y, and Z coordinates. Additionally, each point may include one or more properties 
containing further information, or metadata, such as RGB color values, normal vectors, time of capture, 
return number, or material class. Lidar capture produces point clouds by default, with metadata 

26	  Ekaso et al. 2020.
27	  Kartverket 2017
28	  See also Waagen et al. this volume; Pike et al. this volume.
29	  https://hoydedata.no/, operated by Statens Kartverk.
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designated during pre-processing depending on sensor capabilities and software preferences. In 
photogrammetric workflows, dense point clouds are usually an intermediary step in the processing, 
calculated based on triangulated camera positions and depth maps, and in turn forming the basis 
for raster Digital Surface Models (DSMs), orthomosaics, and 3D meshes. Recent photogrammetry 
software may skip dense point cloud generation altogether, unless there is a specific use case for 
point cloud visualization or analysis.30 This means that the feature and scalar fields available for point 
clouds generated by lidar and by photogrammetry differ. Notably, lidar points have no color data, 
unless colorized based on image capture, and photogrammetric points cannot have return data.

While RGB data are useful for visual inspection, assigning points to distinct classes based on 
terrain and feature type has clear advantages for filtering and segmentation, bulk analysis, or even 
machine learning. A standard set of classification values is defined in the LAS format specification,31 
ensuring interoperability across software packages. A typical use case is the classification of points 
into ground, man-made features and vegetation classes. From this, users can filter out points 
determined to be vegetation to create Digital Feature Models (DFMs), or the retrieval of only ground 
points for Digital Terrain Models (DTMs). While the classification can be carried out manually by 
selecting points and assigning the selection a specific class value, this is labor intensive and not 
feasible with large datasets. However, automatic classification algorithms have been developed 
that try to make real-world distinctions based on point positions and recorded metadata, such as 
the elevation difference to nearby points, return number or color value.32

Štular and colleagues developed a methodology optimized for retaining archaeological features 
in the classification of ALS data and scholars have compared the viability of classification and 
filtering algorithms for ALS, typically with 
a resolution of fewer than 10 points/m2.33 
Creating more nuanced distinctions into specific, 
archaeologically relevant feature classes for high 
resolution point clouds remains a challenge. In 
this study, we focus on creating Digital Feature 
Models (DFMs) to retain man-made features for 
archaeological analysis.

Case study 1: Naxos Quarry Project

Naxos area 1 (Melanes)

For our first drone lidar test case, we selected an 
area under study by the Naxos Quarry Project in 
a shallow valley between the villages of Melanes 
and Ano Potamia that offered the typical profile 
for a Cycladic agricultural landscape, interspersed 
with traces of ancient marble quarrying.34 The 
area is characterized by diverse vegetation and 
terrain, offering an ideal setting for testing lidar 
technology (Figure 4). The study aimed to capture 
a range of terrain features, including open grass 
fields, dense low maquis, higher open vegetation, 

30	  See for instance Shuetz 2016 for Potree, a point cloud web viewer commonly used in archaeology and cultural heritage management.
31	  ASPRS 2019: 29-30.
32	  See Štular and Lozić 2020: 6-7 for a concise overview of the mathematics behind different point cloud classification algorithms.
33	  Štular et al. 2021: 17-18; Podobnikar and Vrečko 2012; Julge et al. 2014.
34	  Levitan et al. forthcoming.

Figure 4. Representative landscape photo of Naxos area 1
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freestanding trees, terracing, stone walls, and buildings. Two areas were delineated for repeat, 
structured flights. The smaller area (measuring 70 x 100m, Figure 5, area 1) was resampled eight 
times in total with variations in recorded returns and flight altitude (Figure 6). 

Figure 5. Areas of the Melanes Marble Quarries selected for repeated lidar survey under different parameters (Area 1) and 
for comparison between lidar and photogrammetry (Area 2).
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As shown in figure 6, the proportion of second returns increased when the flight altitude was 
lowered from 90 to 60 meters AGL, yet the difference between 60 and 30 meters was much less 
distinct. In all cases, multiple returns were predominantly recorded in areas with free-standing olive 
trees or other medium-high vegetation, while very few additional return signals were recorded in 
the low maquis growth. The density of second returns is similar in the data from the three-return 
flights and third returns were sparse. This suggests that the sacrifice in overall resolution in three-
return flights for the possibility of reading an extra return, may not provide significant advantages 
in these landscape types.

Despite limited vegetation penetration overall, pre-trained classification algorithms allowed us 
to separate the data into meaningful classes for further analysis. We tested nine available and 
commonly used classification algorithms on point cloud data from the 30-meter, three-return 
flight to evaluate their effectiveness for Mediterranean lidar data processing (Figure 7). The 
algorithms yielded varied results: some only classified ground points, while others separated 
the data into multiple classes for natural and man-made features. To isolate ground points, we 
excluded points classified as vegetation (low or high) before generating Digital Feature Models 
(DFMs). A Digital Surface Model (DSM) that included all points, without classification or return 
filtering, was generated in Metashape as a baseline comparison (Figure 7, A). The DSM shows the 
dense vegetation cover at different heights, with low maquis in the south, higher bushes and small 
trees in the north-west, and freestanding olive trees in the northeast and southwest. The footpath 
and unobscured stone walls are clearly visible.

Metashape’s built-in classifier uses six predefined classes, from which we could generate a DFM 
that successfully removes the free-standing olives but preserves very little information in the 
areas with low and medium maquis cover (Figure 7, B). By comparison, executing the same process 
for data from the 60m, 3-return flight produces a similar result to the 30m dataset (Figure 7, C). 
However, considerably less ground data is preserved in areas with medium vegetation cover when 
compared to the 30m dataset, contradicting our assumptions based on visual inspection of return 
data.

DJI Terra, the software used to read and export the L1 sensor’s raw data, includes a pre-trained 
classification function with nine classes.35 The DFM generated from this classification resulted in 
some smudging and artificial edges but recovered a good cover of ground points (Figure 7, D). Some 

35	  These are 1) ground, 2) low vegetation, 3) medium vegetation, 4) high vegetation, 5) building, 6) poles), 7) wire, 8) water, and 9) 
unclassified.

Figure 6. Table of flight parameters for UAV documentation of Naxos area 1

Height Returns Total Points 1st return 2nd 
return 3rd return avg res  

(pts/m2) Area (m2) Khz

30 2 38,871,945 96.22 % 3.78 %   5571 6978 240

30 3 24,347,497 96.05 % 3.84 % 0.11 % 3489 6978 160

50 1 12,907,442 100%     1850 6978 240

50 3 9,243,824 96.03 % 3.84 % 0.13 % 1325 6978 160

60 2 14,840,737 96.69 % 3.31 %   2127 6978 240

60 3 9,783,074 96.17 % 3.70 % 0.13 % 1402 6978 160

90 2 5,271,982 97.44 % 2.56 %    756 6978 240

90 3 3,581,754 97.53 % 2.43 % 0.04 %  513 6978 160
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features, like the stone wall in the southwest, running below the vegetation, are discernible even 
if only as negative impressions.

The built-in ground classification tool in ArcGIS Pro is a binary classifier dividing the point cloud 
into ground and unclassified points. It is effective at creating a traditional Digital Terrain Model by 
removing all points classified as non-ground. However, this result also excludes many features of 
archaeological interest, this means that the features we are interested in also disappear (Figure 7, 
E). Nevertheless, this tool serves as a good starting point for further classification and refinement.

While the aforementioned commercial classification algorithms offer limited options for 
adjustments and user refinement, the CANUPO (CAractérisation de NUages de POints) project 
has developed an open-source toolbox based on characterization of geometric properties for the 
classification of point clouds.36 It has the advantage of being built for Terrestrial Laser Scanning 
(TLS) data, which are captured at distances and resolutions much closer to drone lidar. As it only 
considers geometry, and not color, return number, or other scalar data fields, a CANUPO based 
classification should handle photogrammetry and lidar point clouds in exactly the same way. 
While an aging package, the user-friendly interface for supervised training of custom classifiers 
makes CANUPO a useful tool in developing and testing new recording methods. We tested three 
different pre-trained classification models – Vegetation Semi (Figure 7, F), Bedrock Semi (Figure 7, 
G), and Vegetation Super (Figure 7, H) – using the CANUPO plugin for Cloud Compare. These were 
all more conservative than the other models used, trained to target a specific subset of topography, 
and would be better employed in combination. However, the Vegetation Semi classification was 
particularly effective at removing the medium high maquis.

LasTools is a collection of open and closed source point cloud processing tools and algorithms 
developed by rapidlasso.37 We used a combination of lasground, lasheight, and lasclassify, which were 
run through the LasTools QGIS plugin. Lasground is a binary classifier dividing the points into 
ground and non-ground points. It has options for specifying terrain and scale-based parameters, 
like steepness and feature height, to fine tune the algorithm to the input data. The lasheight tool 
computes the height above ground of non-ground points and stores the data in a scalar field for 
use in the next step. Finally, lasclassify combines elevation and neighbor geometry information to 
classify vegetation and features based on height and ruggedness. While a relatively rudimentary 
approach, the ability to adjust parameters and check intermediate results at multiple stages in 
the process gives the user greater control over the outcome. Of our tests, the LasTools pipeline 
produced the best combination of vegetation penetration and preservation of non-vegetation 
features, creating a sharp DEM with little interpolation and smudging (Figure 7, I).

Naxos area 2 (Melanes)

To compare the results of drone lidar and drone photogrammetry in a Mediterranean environment, 
we designated a larger, 50 ha area for three flights at 100 m AGL (Figure 5, area 2). This area 
encompassed Area 1, extending southward to include additional features like footpaths and 
outfield vegetation zones (Figure 8). Two flights captured lidar data with 50% overlap with one 
and three returns. A third flight captured the same area only with RGB photography taken with 
the L1 sensor’s integrated camera for photogrammetry. These were then processed into a high-
quality point cloud using Agisoft Metashape based on depth maps. Point clouds for all three flights 
were classified using Metashape’s built-in classifier, and DFMs were generated by excluding high 
vegetation.

36	  Brodu and Lagur 2012.
37	  https://rapidlasso.de
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A side-by-side comparison of the DFMs from lidar 
and photogrammetry showed minor differences, 
mainly in areas of freestanding, higher vegetation 
(Figure 9, A-D). In more than 96% of the surveyed 
area, the difference between surface models based 
on lidar and photogrammetry are within ±2 cm 
(Figure 9, E). To assess the ability of the method 
to penetrate vegetation, difference-rasters were 
calculated by subtracting each flight’s DSM from 
its corresponding DFM (Figure 9, F-H). Positive 
values (orange-red) indicate areas of vegetation 
removal, while green areas show no change.

Both lidar and photogrammetry struggled to 
reconstruct the ground under dense, low maquis, 
but photogrammetry performed well around the 
edges of the vegetation patches areas due to the 
oblique photo capture angle. Considerably better 
results are noted in the lidar data in the open 
areas with free-standing trees in the northern 
parts of the view. This indicates that a lower-
altitude photogrammetry flight with a stronger 
oblique angle would improve the ability to recover 
ground under such vegetation. A calculation of 

Figure 8. Representative landscape photo of Naxos area 2

Figure 9. Comparison 
of photogrammetry 
and lidar DSM/DFMs 
(top) and difference 
calculations between 
photogrammetry and 
lidar datasets (bottom)
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the difference between the results from the single return lidar DSM/DFM difference map and the 
photogrammetry DSM/DFM difference map (Figure 10) further illustrates the comparison. In the 
northern area, the two methods have more than 15 cm recorded elevation difference in 42% of the 
area, against only 11% in the southern area. This highlights that lidar is most effective compared 
to photogrammetry in areas of higher and more open vegetation, while differences are minimal in 
areas with dense, low vegetation.

Analysis of the classified and processed lidar and photogrammetry elevation data collected at 
Melanes revealed a series of previously undocumented archaeological features throughout the 
study area. In addition to areas of premodern terracing and architecture, high resolution drone 
lidar data proved particularly effective at generating surface elevation data in areas of high 
vegetation that was instrumental in the identification of areas of ancient marble extraction and 
the topographic signatures of ramps and slipways that were constructed for the movement of 
extracted blocks. Each area identified through lidar analysis was flagged for in person ground 
truthing and documentation. Meanwhile, lidar and photogrammetry generated similar elevation 
datasets in areas of dense lower vegetation, although both proved useful in guiding subsequent 
fieldwork and documentation in these areas. These results highlight the benefits of collecting 
and processing high resolution drone lidar for particular environmental conditions in micro-
scale Mediterranean landscape archaeological projects, while reinforcing the effectiveness of 
low altitude drone photogrammetry with oblique image capture for a wider range of landscape 
vegetation profiles at this scale.

Case study 2: Iron Age graves (Mølen, Norway)

While our first case study focuses on the vegetation penetration potential of drone lidar in 
Mediterranean landscapes, our second case study highlights how the classification and analysis 
of drone lidar data can be placed in dialogue with other ALS and photogrammetric datasets for 
cultural heritage management and protection. Focusing on the Mølen Archaeological Park in coastal 
southern Norway, we highlight how lidar can aid in the detection of both human interventions and 

Figure 10. Areas of different 
(blue) and equivalent (green) 
elevation between a section 
of the single return lidar DSM/
DFM difference map and the 
photogrammetry DSM/DFM 
difference map
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natural processes in environments with similar geological and vegetation profiles to Mediterranean 
contexts.

Mølen is the southwestern tip of Raet, the longest Scandinavian terminal moraine formed towards 
the end of the last glacial period. The area is covered in a thick layer of cobbles and small boulders, 
the remains of moraine masses where smaller particles have been washed out by the sea. The 
archaeological site consists of 230 mounds and cairns ranging from 1 to 35 meters in diameter 
believed to date from the 1st millennium CE (Figure 11).38 Though legally protected, it remains 
a popular recreational area, resulting in landscape wear and the construction of cairns and 
windbreaks from the local stone.

The site has been documented by aerial photography repeatedly since 1959,39 and has more recently 
been covered by several ALS campaigns. The current analysis uses the four ALS datasets with a 
resolution of 5 points/m2 or higher recorded between 2008 and 2022 as comparison data for our 
UAV lidar scan (Figure 12). Nesbakken and Risbøl40 conducted a similar Change Detection Analysis 
using the 2008 and 2010 DEMs, combined with a manual analysis of seven aerial photography 
datasets. They were able to identify changes in elevation of more than 10 cm in seven of the main 
mounds, six of which showed a central build up and material disappearing from the side or base, 
compatible with a known restoration and reconstruction project in 2009.41

For this study, DSM rasters were generated from each dataset’s point cloud and used to calculate 
difference rasters between the 2024 data and each earlier lidar recording. These rasters were 

38	  Berge 2009: 17-18.
39	  11 orthomosaic datasets available at www.norgeibilder.no, a public portal for rectified geodata.
40	  Nesbakken and Risbøl 2014.
41	  Nesbakken and Risbøl 2014: 140-142; Berge 2009.

Figure 11. The archaeological and coastal landscape of the Mølen Iron Age tombs
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visualized in ArcGIS Pro, highlighting the period of material addition and removal (Figure 13, top). 
A second visualization was made comparing the full spectrum of change between 2008 and 2024, 
with areas of increasing elevation shown in cyan/blue and material removal in red (stepped at 
0.15–1m, Figure 13, bottom). To aid the association of changes with recorded mounds, polygons of 
recorded monuments were added using the open API of the Directorate of Cultural Heritage, and 
the orthomosaic from the photogrammetry recording was used as a background layer.

The lower point density of the earlier ALS datasets (5-22 points/m²) caused some interpolation 
of larger surfaces, leading to smoother elevation models compared to the denser drone lidar data 
(1000+ points/m²). This difference in point density generated more noise in comparisons between 
datasets with varying resolution. This required the introduction of a larger buffer margin than the 
one used by Nesbakken and Risbøl, hiding recorded elevation differences of less than 15 cm, versus 
the 10 cm used in the earlier comparison. Risbøl elsewhere argues for diminishing returns with 
resolutions above 5 points/m2.42 However, that is within the framework of traditional ALS lidar 
recording working on averaged surfaces. The low altitude UAV resolution is high enough to track 
individual stones down to cobble sizes.

Our analysis recorded a total of 169 changes from 2008 to 2024, which included clearly identifiable 
human-made alterations to existing mounds and the construction of new cairns, pits, and 
embankments by visitors to the site. The official reconstruction efforts in 2009 noted by Nesbakken 
and Risbøl were confirmed in our data. The section of the site shown in Figure 13 highlights some 
typical alterations. Material has been removed at several spots along the top of the long, ship-
shaped mound, and redeposited further down its sides (alterations 2-6). Alteration 20, to the east, 
is the buildup of a windbreak, which was primarily constructed between 2010 and 2017, with some 
further material removal between 2017 and 2022. Finally, alteration 11 and 12 shows a new cairn 
being raised using stones from existing, protected cairns after 2022.43 This is the only major change 
in the last two years.

The results from Mølen highlight the effectiveness of drone lidar for monitoring long-term 
changes in archaeological sites, capturing both natural and human-induced alterations with high 
precision. It also exhibits the effectiveness of comparing elevation datasets collected by different 
lidar sensors and under a range of data collection parameters. As airborne and drone lidar 
workflows become increasingly integrated within the toolkits of archaeologists working in Greece 
and the Mediterranean more broadly, the resultant datasets can be deployed not only to guide 
feature detection and regional study but will serve as important benchmarks to monitor landscape 
change and cultural heritage management. For this purpose, the analysis of both large-scale aerial 
and low-altitude drone lidar datasets can be used to effectively identify areas at risk of natural or 

42	  Risbøl and Gustavsen 2016: 20-23.
43	  A yearly monitoring program is planned, using the same equipment and parameters as the 2024 documentation. This will provide 
point clouds with directly comparable resolutions, which allows for testing of the sensor’s precision and accuracy and provide tracking 
of smaller scale changes.

Year Resolution (pts/m2) Method Sensor Publication

2008 10 Helicopter, 500m agl Leica ALS 50-II Solli 2008

2010 22 Helicopter, 450m agl TopEye S/N 7 Blom Geomatics 2010

2017 5 ALS Riegl VQ-1560i Torsnes 2017

2022 10 ALS Riegl VQ-1560ii-S Gustafsson 2022

2024 1109 UAV, 50m agl DJI L1  

Figure 12. Table showing aerial documentation of the Mølen Iron Age Tombs
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Figure 13. Change detection rasters showing elevation change by date (top) and total positive or negative difference (bottom) 
at the Mølen Iron Age Tombs
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anthropic change. However, we argue that drone lidar platforms will play a key role for tracking 
landscape change and overall archaeological site preservation, as they offer a cost effective and 
nimble solution for the repeated data collection of particular study areas required to undertake 
effective change detection analysis over the long term. 

Conclusions

The use of drone lidar in both case studies highlights the utility of this tool for capturing detailed 
topographic data for archaeological research, particularly in areas where higher altitude aerial lidar 
may be too coarse for effective data collection. On Naxos, drone lidar was particularly effective at 
penetrating higher vegetation and identifying linear features like terracing and stone walls, while 
in Mølen, it provided precise elevation models of archaeological features that can be used to track 
change over time. However, drone lidar was less effective in areas of dense, low vegetation, where 
sensor penetration was often limited. In both instances, choosing the most effective classification 
strategy increased the utility of these data and their potential for archaeological study and 
documentation.

One challenge encountered in testing industry-standard automated classification models is that 
many existing algorithms are optimized for high-altitude, low-resolution manned-aircraft lidar 
data (traditional ALS). While the principles remain the same, the features we aim to capture and 
how they appear in drone lidar data are different, resulting in misclassification and overlooked 
features. In some instances, these algorithms still produced useful results, albeit with some 
misclassifications (e.g., stone walls being identified as cars by Metashape’s built-in classifier). 
These results highlight the importance for archaeologists working with lidar data processing 
to develop familiarity with a range of classification tools, and how the use of a combination of 
classifiers on the same dataset may provide the most useful results for their research questions. 
Moreover, limitations in the classification of drone lidar data with existing models highlights the 
urgent need for algorithms specifically targeting both close-range aerial lidar, and archaeological 
features visible at this scale.

Recent advancements, such as the development of 3DMASC (3D Multi-Attributes, Multi-Scale, 
Multi-Cloud), offer promising new tools for the classification of complex low-altitude datasets.44  
3DMASC is available as a plugin for CloudCompare, presenting a GUI for supervised training of a 
classifier, albeit with a considerably higher learning curve than similar platforms. 3DMASC was 
shown to outperform available classifiers on complex datasets and uses a far broader spectrum of 
input data than CANUPO,45 highlighting the potential of this tool for the development of custom 
low-altitude archaeological classifiers. A different, low-level approach using machine learning for 
unsupervised or hybrid semi-supervised techniques for training classifiers with neural networks is 
worth investigating further.46 Pipelines based on these approaches are likely to be able to produce 
highly specified classifiers for a variety of data contexts without the need for large pre-labelled 
training sets.

While drone lidar systems have made the technology more accessible to a broader archaeological 
audience, the affordability, mobility and ease of use of drone photography for photogrammetry is 
still unparallelled. To justify the investment in lidar workflows over photogrammetry, the gains in 
research output need to be substantial. Such benefits have been convincingly presented in wooded 
landscapes with a high, albeit penetrable canopy.47 However, our findings suggest that in arid 

44	  Letard et al. 2024
45	  Letard et al. 2024: 195-197.
46	  Several python-based deep learning frameworks, including pyTorch and TensorFlow, contain libraries for working with point cloud 
and 3D data. Language-model based coding aids are rapidly making these tools accessible for non-experts.
47	  See, for example, the recent results of Abate et al. 2025, based on the classification of low altitude drone lidar data classified to 
maximize feature detection beneath forest canopy at the site of Torre Castiglione in Puglia.
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Mediterranean landscapes with dense maquis vegetation or in open coastal landscapes like Mølen, 
photogrammetry often produced point clouds with accuracy nearly identical to those from lidar, 
with slightly higher horizontal resolution. This aligns with similar findings in areas like urban 
parks.48 In such environments, the ability of lidar to penetrate dense vegetation is not significantly 
superior to photogrammetry, although with continued advancements in hardware and operator 
experience, it may still provide advantages in certain contexts. As expected, the photogrammetry 
data showed little ability to map ground points below the vegetation, but low and strongly oblique 
image capture produced surprisingly good data at the edges and under overhanging vegetation.

The processing time required to produce the initial, unclassified point cloud is considerably shorter 
with lidar capture and involves fewer user-defined parameters than photogrammetry. However, 
photogrammetry is able to produce data at lower costs, with the additional benefit of processing 
flexibility due to its use of standard image formats and text based spatial data, processed using 
any of a wide range of accessible software packages. This means a number of different software 
packages can be used in the processing, including F/OSS and free-to-use alternatives, and the raw 
data can easily be archived and reprocessed in the future.

A notable reminder from our testing is the enhanced level of detail that can be extracted from 
photogrammetry using point cloud processing and visualization typically reserved for lidar data. 
This offers the opportunity to highlight the subtle changes in surface topography – like toolmarks, 
cuttings, or poorly preserved structures – necessary for the documentation, monitoring, and 
interpretation of archaeological landscapes.

Aerial data collection strategies for archaeological research continue to develop at a rapid rate, 
with regular advances in hardware platforms and software packages revolutionizing the way that 
archaeologists record topography, identify areas of archaeological interest, and monitor known 
sites of cultural heritage. Recent advances in low altitude, high resolution lidar data collection 
and processing have already left their mark on these initiatives, with many more developments 
yet to come. Moreover, software developments linked to lidar data processing have the potential 
to increase the utility of lower cost and more accessible means of aerial data collection like drone 
photogrammetry. While the low, dense vegetation and rugged topography of Melanes and Mølen 
do not present the traditional forested or jungle landscapes for which the results of aerial lidar 
have been most celebrated, they highlight how lidar survey can be used in interesting new ways to 
detect, document, and monitor cultural heritage across a range of environmental zones.
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