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Introduction

Over the last decade, archaeologists around the world have increasingly added lidar data from 
aerial and terrestrial platforms to their project toolkit. As lidar-based archaeology has proliferated, 
experience with the technology has not been evenly distributed. The technology garnered 
recognition for its ability to precisely map ground surfaces under dense canopy in the heavily 
forested regions of Mesoamerica, Southeast Asia, and parts of Europe.1 In the Maya Lowlands, 
researchers acknowledged the revolutionary nature of the technology early on.2 Subsequent 
years of use have allowed its applications to mature, as seen in studies analyzing patterns of social 
inequality and redefining ancient Maya rural land use.3 Importantly, this maturation has allowed 
for the refinement of survey methods as archaeologists have confronted the mistakes of early 
applications, for example issues of mismatching verification procedures and representational 
issues in classified datasets.4 

Despite persistent archaeological interest, the Mediterranean region boasts relatively few 
lidar-based archaeological studies, with even fewer extending beyond single-site or small area 
surveys.5 Many archaeological landscapes of interest in the Mediterranean are situated in modern 
agricultural areas, both facilitating research and biasing our understanding away from the forested, 
hilly regions commonly studied with lidar.6 Furthermore, most lidar-based research in Europe has 
been conducted in Spain, Italy, Slovenia, and Croatia, often focused on denser forests than the 
scrub maquis land cover common in Mediterranean hinterlands.7 Given the nascence of lidar-

1       Li 2021.
2	  Chase et al. 2011; 2012.
3	  Beach et al. 2019; Garrison et al. 2019; Thompson et al. 2021.
4	  Garrison et al. 2023; Fontana 2025.
5	  Fontana 2022.
6	  Campana 2018; Attema et al. 2020; Knodell et al. 2023.
7	  Vinci et al. 2024.
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based archaeology in Greece,8 there is opportunity to adapt the best techniques from mature areas 
of lidar-based archaeological research to existing Greek archaeological practice, thereby ensuring 
early applications remain useful as the field grows.

Incorporation of remote sensing methods into archaeological practice has driven scholars to 
examine critically lidar processing and classification survey procedures as a whole. Pre-processed 
lidar-derived topographic models, like those available for download on many national GIS 
platforms,  risk obscuring acquisition and processing biases and manual feature classification 
requires significant documentation to present reproducible research, prompting researchers to 
develop transparent, open-source processing systems for archaeological contexts.9 Regional spatial 
analyses that compare feature distributions between survey regions require comparable datasets, 
and datasets that use different verification strategies may not provide adequate comparability, a 
lesson only learned as lidar-based Maya archaeology matured.10

This article presents an accuracy assessment of a lidar-based archaeological survey in the Greek 
Cycladic islands. Following a pilot study on Polyaigos in 2022, the Small Cycladic Islands Project 
(SCIP) – an intensive pedestrian survey project targeting the uninhabited islets of the Cyclades 
–  implemented an accuracy assessment protocol in 2023 to quantify the reliability of lidar for 
identifying archaeological features in this maquis-dominated landscape.11 We advocate for 
transparency in data processing and interpretation, while arguing that the integration of area-
based field verification methods into existing Mediterranean pedestrian survey practices provides 
an ideal model for lidar-based prospection in Greek archaeology, as this approach aligns well with 
existing practice and provides robust classification datasets for future regional analyses.

Lidar processing and analysis for archaeological research

Lidar data may be acquired from a variety of aerial, terrestrial, and mobile platforms. Each make 
and model of sensor collects data differently and has its own benefits and restrictions. Mobile lidar 
devices are increasingly available on phone and tablets and are being used to record archaeological 
features everywhere from New Zealand12 to our own field documentation on SCIP. Higher 
resolution, tripod-based lidar scanners have been used to document larger spaces, like excavation 
tunnels in Guatemala.13 However, airborne laser scanning (ALS) systems are by far the lidar sensors 
most commonly used by archaeologists and are the focus of the present study. A clearly justified 
acquisition, processing, and visualization method ensures analysts use a transparent dataset 
for feature classification. As all processing steps prior to analysis affect accuracy results, this 
justification enables the accuracy data to inform potential sources of error. 

ALS data processing

Consideration of lidar acquisition and processing procedures can improve dataset utility for 
archaeological prospection. Consultation on flight planning includes consideration of desired 
ground-point density, often weighted against total area to be covered. To balance areal coverage 
with costs, the acquisition produced lower density point-clouds for larger islands relative to 
smaller islands, while also providing an assessment of a range of point densities. In practical terms, 
the lidar sensor flew at two separate altitudes of 3,000 ft (yielding a point density of 34 pts/sq m) 
and 4,500ft (8 pts/sq m). Following data acquisition, archaeologist input best informs post-flight 

8	  Agapiou et al. 2022; Lucas and Sánchez 2022; Vinci et al. 2024.
9	  Štular et al. 2021; Doneus et al. 2022.
10	  Garrison et al. 2023.
11	  Athanasoulis et al. 2021; Knodell et al. 2022; Knodell et al. 2025.
12	  Cohen-Smith et al. 2022.
13	  Garrison et al. 2016.
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processing and visualization decisions.14 Ground-point filtering algorithms classify raw elevation 
points into descriptive classes, with different algorithms having variable abilities to distinguish 
archaeological features from ground or vegetation classes. This is especially problematic under 
dense, low vegetation like the maquis cover common in Mediterranean landscapes, prompting 
the creation of custom ground-filtering algorithms.15 The consistent contracting of the same lidar 
acquisition centers and companies by multiple projects – as with the National Center for Airborne 
Laser Mapping (NCALM) in Mesoamerica and AeroPhoto Ltd. in Greece – allows the remote sensing 
technicians to refine their algorithms so that they are tailored better to the needs of archaeologists.16 
After classification, interpolation algorithms create continuous elevation surfaces from classified 
point-clouds. Digital terrain models (DTMs) are surfaces interpolated only from ground points 
while digital surface models (DSMs) only include the highest point of a given laser pulse.17 Štular 
and colleagues additionally propose a digital feature model (DFM) that interpolates using ground 
and other archaeologically relevant point classes to provide the most comprehensive single surface 
model for archaeological applications.18 Interpolation algorithm choice impacts the topographic 
fidelity and surface noisiness of the model, potentially limiting archaeological interpretability. The 
same scholars propose a hybrid algorithm to maximize archaeological utility of elevation models 
without selecting the most time-consuming algorithms. Visualization algorithms manipulate 
these interpolated surfaces to enhance their utility for analysis.19  

Different visualizations are suitable for different landscapes and features, thereby affecting 
classification quality and reproducibility. Usually, archaeologists use 2.5D visualizations – images 
that mimic 3-D environments in a 2-D setting – built from elevation models to aid interpretation. 
Simple illumination models, particularly the basic hillshade, are commonly used due to perceived 
intuitiveness and ease of computation but risk oversimplification, prompting the creation of 
alternative models like the multidirectional hillshade.20 Additionally, topographic filtering 
algorithms calculate topographic parameters such as slope or local dominance that remove the 
visual bias of landscape features, emphasizing useful topographic indices.21 Blends, like the Red Relief 
Image Map (RRIM) or the Visualization for Archaeological Topography (VAT), combine multiple 
visualizations into one image to reduce visualization switching, although complex manipulation of 
the DTM risks obscuring certain topographic features which might cause confusion for the analyst 
(Figure 1).22 Consultation of multiple visualizations during feature classification ensures the most 
robust results.

Feature classification and verification

The company or center responsible for acquiring the data commonly conducts the point 
classification necessary to create the visualizations described above, though this may be done 
in consultation with archaeologists. Conversely, archaeologists, ideally with a background in 
remote sensing and familiarity with the landscape represented in lidar visualizations, typically 
perform the feature classification necessary to extract archaeological information from lidar 
data. A description of the classification process and a standardized field verification strategy 
are necessary to give confidence to classified features across the whole dataset, especially when 
verification of all features is impractical. The decision-making process for classification is opaque 
but can be split between ‘interpretative mapping’,23 where local and archaeological knowledge 

14	  Lozić and Štular 2021.
15	  Doneus, Mandlburger, and Doneus 2020; Štular and Lozić 2020.
16	  Fernandez-Diaz et al. 2014.
17	  Dong and Chen 2018.
18	  Štular et al. 2021.
19	  Štular et al. 2023.
20	  Kokalj and Somrak 2019; Crabb et al. 2023.
21	  Štular et al. 2012; Doneus 2013; Crabb et al. 2023.
22	  Chiba et al. 2008; Kokalj and Somrak 2019; Crabb et al. 2023.
23	  Doneus, Doneus, and Cowley 2022.
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informs feature classification, and geospatial parameter calculations.24 Although easy to record, 
geometric parameters do not remove classification subjectivity, as classification rarely relies 
on the convergence of multiple parameters. Conversely, the archaeological or remote sensing 
experience that influences visual interpretation is not readily parametrized and reported. It is thus 
difficult to reproduce precisely how analysts interpret visualizations, especially if descriptions of 
parameters are missing.25 Each attribute must be considered as a tradeoff between analytical utility 
and time added to the classification process, which will depend on project needs. Furthermore, 
both the feature category choices and the analyst’s skill and experience introduce bias into the 
classification,26 with multi-analyst methods requiring significant resources to conduct.27 Beyond 
human analysts, artificial intelligence models hold potential for replacing or augmenting reliance 
on individual analysts altogether, although research using these tools remains highly localized 
at present and still require an archaeologist familiar with the region being analyzed in order to 
implement correctly and assess accuracy.28 

Once classified, results must be verified. Garrison and colleagues describe three methods commonly 
used for verifying classified archaeological features: map-based verification, where the verification 
team compares the classification to maps of known features from previous work in a region, target-
based verification, where the verification team selects features for field visitation, and area-based 

24	  Grammer et al. 2017; Hutson 2015.
25	  Doneus, Doneus, and Cowley 2022; Lozić and Štular 2021 suggest standardized analytic templates.
26	  Cowley 2016; Grammer et al. 2017; Garrison et al. 2023.
27	  See Quintus et al. 2017 for a robust multi-analyst workflow. Overlap in classification area assigned to individual analysts reduces 
accuracy biases, but redundancy limits the time-saving benefits of employing multiple analysts.
28	  See Bickler 2021 for a brief overview of the applications of machine learning to remote sensing archaeology.

Figure 1. Comparison of the multiscale topographic position index (MSTP), a complex blend visualization representing each 
pixel’s relative position at three scales, with a slope raster overlaying a simpler VAT blend. Distinguishing between high and 
low elevations is difficult in the MSTP without training. (Map by B. Manquen).
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verification, where a verification team mixes a target-based system a systematic ground survey to 
find missed features.29  The same authors argue that the area-based method most comprehensively 
assesses the classification system because it systematically identifies both false negatives and false 
positives, giving a clear sense of both under- and overidentification issues in the classification 
methodology. They warn that inattention to classification assessment practices early in lidar-
based research affects later studies, as differences in feature densities between regions might be 
skewed by the verification method of each regional project, not by a real difference in features. 

Fortunately, intensive pedestrian survey methods that are common in Mediterranean landscape 
archaeology are readily transferable to area-based verification methods.30 The side-by-side 
coverage of survey grid cells is functionally the same design as the area-based verification strategy. 
Integration of lidar prospection into an existing intensive survey or expansion of side-by-side 
fieldwalking methods to the scale of a larger-scale lidar survey can help achieve robust, verified 
lidar datasets. Additionally, the overlap in design reflects shared concerns about data biases 
and comparability between practitioners of both methodologies.31 This beneficial conversation 
between fields mirrors how lidar methods can benefit Mediterranean survey archaeology. Survey 
projects are commonly biased against the steep, scrub-covered landscapes that inhibit visibility and 
mobility, what Campana calls ‘emptyscapes’ due to the temporal and spatial patterns of past land 
use lost due to this phenomenon.32 Remote sensing methods have been proposed to mitigate this 
bias.33 The SCIP team confronted many of the challenges described above during the integration of 
lidar data into the pre-lidar database, as the project had three seasons of data collection prior to 
the first lidar acquisition flight in May of 2022.34

Regional setting

The Small Cycladic Islands Project is a regional archaeological survey of the many small, 
uninhabited islets across the Cyclades. The diachronic intensive survey of these islets investigates 
human interactions with these dry, remote island landscapes, from periods of occupation to 
ephemeral visitations, as well as their relative integration into cultural and economic networks 
at multiple scales.35 The project seeks to understand how both material resources and evolving 
cultural conceptions of marginality and nodality have shaped islet habitability, following calls 
from island archaeologists to focus on small islands networks for their sensitivity to regional 
trends.36 Fieldwork in 2023, the subject of the verification program of this paper, focused on the 
islets around Andros, Tenos, Mykonos, and Amorgos (Figure 2).

Methods

We developed a systematic feature classification protocol to map and describe all archaeological 
features on each islet surveyed in the 2023 field season using lidar-derived visualizations and 
orthophotographs, following preliminary uses of lidar survey during the 2022 field season.37 
AeroPhoto Ltd. collected lidar point-clouds for about 100 Cycladic islands covering 84 km2 of land. 
All visualizations derived from lidar as part of SCIP use these data. AeroPhoto collected lidar data 

29	  Garrison et al. 2023.
30	  Knodell et al. 2023 detail the widespread application of this method in Greece and the Mediterranean. See also Attema et al. 2020; 
Knodell 2025.
31	  Knodell and Leppard 2018; Attema et al. 2020 describe the breadth of the representation biases common among intensive survey 
projects, along with some remedies.
32	  Campana 2018; see also Attema et al. 2020; Knodell et al. 2023 show that few intensive surveys in the Mediterranean occur outside of 
low elevation, open, agricultural landscapes. See Caraher et al. 2020, Roussos 2020, and Wiersma et al. 2022 for examples of ‘emptyscapes’ 
in Greek landscape archaeology.
33	  Agapiou et al. 2022; Meyer 2023. Canuto et al. 2018 address a similar situation in Maya landscape archaeology using lidar.
34	  Knodell et al., this volume.
35	  Athanasoulis et al. 2021; Knodell et al. 2022.
36	  Fitzpatrick et al. 2016; Braje et al. 2017; Dawson 2019; Athanasoulis et al. 2021; Knodell et al. 2022.
37	  Knodell et al. 2025.
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with a RIEGL VQ-1560i sensor with 30% sidelap at 58.52-degree field-of-view in late April 2022 after 
consultation between AeroPhoto, Knodell, and Garrison. For the 2022 data, two flight altitudes 
achieved two target point densities: 3000ft for 34pt/m2 and 4500ft for 8pt/m2. Laser pulse repetition 
rate (PRR) maxima were 2x2MHz and 2x800kHz for each altitude, respectively. AeroPhoto carried 
out a second set of flights in the spring of 2023 using a RIEGL VQ1560II with integrated Applanix 
610/IMU-57 and PhaseOne iXU-RS 1000 50mm RGB 100MP camera; the mean AGL for this flight was 
3600 ft with 25pt/m2 resolution. The data cover a mix of previously surveyed islands, islands with 
planned pedestrian surveys, and test islands without plans for pedestrian survey. Of the 84 islands, 
SCIP selected 23 islets covering 9.48km2 for both lidar and pedestrian survey during the summer 
2023 field season. The aggregate dataset point density for these 23 islands is 20.5pt/m2. AeroPhoto 
provided 0.25m-resolution DSMs and DTMs, as well as orthophotos ranging in resolution between 
0.08m–0.12m.

We processed each point-cloud with a standardized processing pipeline. First, Manquen created 
a DFM interpolating ground, building, and archaeological feature lidar point codes (2, 6, and 19, 
respectively) using lidR38 package for R version 4.3.2 and employing an ordinary kriging interpolation 
method (k=20) at 0.25m resolution for most islets. We created the DFM for Nikouria, Amorgos using 
the inverse distance weighted (IDW) interpolator due to processing power limitations. We then 
created a suite of five visualizations for the DFMs and DSMs (Figures 3 and 4) using the Relief 
Visualization Toolbox39 Python library in JupyterNotebook. The processing and visualization 
pipeline produced 23 0.25m DFMs and 230 visualizations, five per DFM and five per DSM. These 
visualizations balance analysis time and analytical power by having multiple, complementary 

38	  Roussel et al. 2020.
39	  Zakšek et al. 2011; Kokalj and Somrak 2019.

Figure 2. Map of islets surveyed around Andros, Tinos, Mykonos, and Amorgos during the 2023 field season of the Small 
Cycladic Islands Project (SCIP) using lidar methods. (Map by B. Manquen).
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 Figure 3. Visualization suite used for lidar-based classification. Strengths and weaknesses are reported from user experience. 
(Table by B. Manquen).

representations of the landscape.40 We loaded the generated rasters into QGIS Version 3.28 Firenze 
for feature classification.

We conducted manual archaeological feature classification for each islet prior to visitation for 
intensive survey. Two analysts divided the dataset, with three islets (Am-AA, Am-KA, and Am-
AN) analyzed by Rosie Campbell, the rest by Manquen. Typically, the orthophoto and Slope-VAT 
visualizations were the base visualizations used to start the identification process, after which the 
local dominance and the gradient relief model enabled fine-tuned feature classification (Figures 
5A and 5B). The analyst drew identified features as line vector geopackage files (.gpkg) with 
multiple attributes, most importantly the feature type category (Figure 6). We also used the ‘lidar 
notes’ field to describe characteristics that justified classification or expressions of uncertainty. 
The ‘Area of Interest’ (AOI) classification marked features with high uncertainty as a precaution, 
as the full coverage of the field verification strategy afforded visitation of highly unlikely features 
as a precaution. Both line and polygon vectors marked structures, terrace complexes, enclosure 
systems, and quarries (Figure 5C). 

We verified all classified features during the 2023 SCIP field season using a mixed target-based and 
area-based methodology, which seamlessly integrated into the existing intensive pedestrian survey. 
A feature documentation team conducted a target-based verification for each classified feature 
using QField for Android. Additionally, the intensive pedestrian survey teams noted any missed 
features discovered during side-by-side survey, providing the area-based coverage necessary to 
identify false negatives in lidar feature classifications.41 All verified features were labelled as false 
positive (FP), false negative (FN), or true positive (TP). 

After verification, we removed weak classifications and split multipart features into individual 
vectors. We defined weak classifications as those features labelled as highly uncertain during the 

40	  Kokalj and Somrak 2019.
41	  Garrison et al. 2023.

Visualization Composition Strengths Weaknesses

Basic DFM (topographical color ramp; 80% opacity; 
Multiply blend mode) over Hillshade (315 azimuth, 
35 elevation; singleband gray; 100% opacity; Normal 

blend)

Landscape-scale 
topography

Microtopography

Slope-VAT Slope (White-Red color ramp; 80% opacity; Multiply 
blend mode) over VAT (singleband gray; 100% 

opacity; Normal blend)

Microtopography; 
landscape-scale 

topography

Relief

Red Relief 
Image Map

Openness Index (Green-Yellow color ramp; 80% 
opacity; Multiply blend mode) over Slope (White-

Red color ramp; 100% opacity; Normal blend)

Relief, 
microtopography

Gentle features

Local 
Dominance

Local Dominance (Rainbow color ramp; 80% opacity; 
Multiply blend mode) over Hillshade (315 azimuth, 
35 elevation; singleband gray; 100% opacity; Normal 

blend)

Relative elevation 
(large-scale)

Landscape-scale 
topography

Gradient Relief 
Model

Simple Local Relief Model (Radius: 16 px; Blue-
Yellow-Red color ramp; 60% opacity; Normal blend 
mode) over Gradient Relief Base (three-band color 

composite; 100% opacity; Normal blend)

Relative elevation 
(small-scale)

Landscape-scale 
topography
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Figure 4. Examples of visualization methods applied to the islet of Gramvousa, near Amorgos: (A) Basic Visualization; (B) 
RRIM; (C) Slope-VAT; (D) Local Dominance; (E) Gradient Relief Map; (F) Orthophoto. (Map by B. Manquen).

initial classification. None of these highly uncertain features were true features.  We then cleaned 
multipart vectors with significant separation between parts by splitting them into individual 
segments in QGIS to reflect the classification of individual features in the visualizations. This rule 
only applied to agricultural terrace complexes and pastoral systems where analysts identified wall 
segments as independent objects. Segment splitting aimed at assessing lidar’s ability to detect 
individual objects.

We then exported feature vectors from QGIS as a comma-separated values file (.csv). These vectors 
contained error data used to create an error table with the dplyr package for RStudio (R Version 
4.3.1) (Figure 7). We calculated four accuracy metrics for each feature category. ‘Accuracy’ is 
the ratio of true positives to total feature count. ‘Precision’ (or ‘User’s Accuracy’) accounts for 
commission errors (Type I) and is the ratio of true positives to both true and false positives. ‘Recall’ 
(or ‘Producer’s Accuracy’) accounts for omission errors (Type II) and is the ratio of true positives 
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Figure 6. Attribute input pop-up used to digitized features during manual classification. (Image by B. Manquen).

Figure 5. Sample classification inputs and results for the islet of Gramvousa, Amorgos: (A) Orthophoto; (B) Slope-VAT; (C) 
Final classification as multiline and polygon vectors. (Map by B. Manquen).
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to true positives and false negatives. ‘F1 Score’, or the harmonic mean of precision and recall, is a 
single statistic that evaluates the classification method’s ability to correctly identify features while 
minimizing both false positives and negatives.42 

Results

After data cleaning and splitting, the final feature dataset contained 896 feature segments 
corresponding to 234 unique features. Figure 7 presents the accuracy table for all feature classes 
with more than 50 occurrences. Only three feature classes have more than 50 occurrences. Both the 
‘terrace’ and ‘wall’ classes have higher recall than precision, with the ‘structures’ class displaying 
the reverse. The field team typically verified extensive terrace complexes as units, with any falsely 
identified or missed segments added if detected. During classification, we placed walls that were 
not clearly part of a terrace complex or structure – typically pastoral enclosures or check dams – in 
the ‘wall’ class. The tendency to classify uncertain linear features as ‘wall’ rather than ‘terrace’ may 
explain the lower accuracy rate for ‘wall’ compared to ‘terrace’. 

The ‘other’ class in Figure 7 represents feature classes containing fewer than 50 instances. Figure 8 
presents these classes separately because they should be interpreted cautiously due to low sample size. 
The most common features are the ‘pit’ and ‘mound’ categories, which we consider true positives only 
if anthropogenic in origin. Miscellaneous features include rock cairns, graffiti, salt pans, rock cuttings, 
debris, and construction equipment. While these features are important for understanding human 
behavior on the islets, they are usually too small and indistinct to register in the lidar visualizations.

42	  Campbell et al. 2023.

Figure 7. Validated accuracy results of the 2023 lidar survey. (Table by B. Manquen).

Figure 8. Validated accuracy results for feature classes composing the ‘other’ group in Figure 7. (Table by B. Manquen).

Type Total True 
Positive

False 
Positive

False 
Negative Accuracy Precision Recall F1

Terrace Walls 406 358 43 5 88.2% 89.3% 98.6% 93.7%
Structures 193 158 13 22 81.9% 92.4% 87.8% 90.0%

Walls 140 107 22 11 76.4% 82.9% 90.7% 86.6%
Other 157 77 46 34 49.1% 62.6% 69.4% 65.8%

Total (w/ Other) 896 700 124 72 78.1% 85.0% 90.7% 87.8%
Total(w/o 

Other) 739 623 78 38 84.3% 88.9% 94.3% 91.5%

Type True 
Positive

False 
Positive

False 
Negative Accuracy Precision Recall F1

Cave or Shelter 0 0 3 0.0% NA 0.0% NA

Cistern 0 0 1 0.0% NA 0.0% NA

Mine 11 2 1 78.6% 84.6% 91.7% 88.0%

Misc. 12 6 23 29.3% 66.7% 34.3% 45.3%

Mound 6 13 2 28.6% 31.6% 75.0% 44.4%

Pit 8 19 1 28.6% 29.6% 88.9% 44.4%

Quarry 3 4 1 33.3% 37.5% 75.0% 50.0%

Roads and Paths 32 2 1 91.4% 94.1% 97.1% 95.6%

Threshing Floor 5 0 1 83.3% 100% 83.3% 90.9%
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Our method did not systematically assign chronological periods during the lidar classification, 
following SCIP’s diachronic interest in documenting all features present on each islet. Our method 
did not measure misclassifications, or features identified but assigned an incorrect class. Finally, 
we dropped the AOI category (15 occurrences) from analysis because we did not identify AOIs 
systematically but instead marked them as precautionary areas to investigate if time permitted.

Discussion

The inclusion of both false positive and false negative features in the systematic classification 
verification facilitates reflection on the relative strengths of the classification methodology for 
each feature type. A key strength of the area-based method is the ability to generate precision, 
recall, and F1 scores.43 Our methodology confidently produced this information for the ‘terrace’, 
‘wall’, and ‘structure’ classes, and for other smaller classes. Furthermore, the full island coverage 
of the intensive pedestrian survey and area-based verification enabled our method to prioritize 
feature detection over classification precision, which is reflected in the overall higher recall 
compared to precision, though this trend varies somewhat by feature class.

Classification accuracy

The ‘terrace’ and ‘wall’ classes, both linear features with similar profiles in the remote sensing 
imagery, present similar accuracy trends. Since we are interested in evaluating the classification 
method by its success in identifying features while balancing false positives and false negatives, we 
prioritize using the F1 score to interpret classification performance. The 93.7% F1 score achieved for 
the ‘terrace’ class reflects the recognized strength of lidar prospection for detecting archaeological 
terraces both within the Mediterranean and in other regions.44 Specifically, recall scores are 
significantly higher than precision scores for both types, indicating that the analysts rarely missed 
these features during classification. A recall of 98.6% for terraces suggests that terrace complexes 
are highly visible under Mediterranean maquis land cover. Conversely, the lower precision scores 
suggest that this methodology produces false positives for these linear wall features. A likely source 
of this error are the linear erosional patterns commonly found on these landscapes (Figures 9A and 
9B). In these cases, analysts mistook natural bedrock patterns for fragmented, aggraded walls or 
agricultural terraces assuming that the messy signatures in the visualizations represented older, 
poorly preserved anthropogenic constructions. The source of these geomorphic features is likely 
related to the complex extensional geology of the region45 combined with aeolian and/or coastal 
erosional processes,46 although we did not collect geomorphological information during the field 
verification. 

Classification accuracy remained high for the ‘structure’ class overall but reversed the precision 
and recall pattern of linear features. The 90% F1 score reflects the high overall accuracy, but unlike 
the total trend, this category has higher precision compared to recall. This indicates that the 
classification methodology produced fewer false positive identifications of structures compared to 
other features. Instead, it more commonly failed to identify verified structures. This is likely due 
to the prevalence of small structures, some of which were obscured by slope and low vegetation 
(Figures 9 C and 9D), although our method did not statistically test causality. However, for many 
structures left unmarked during remote classification, only georeferenced photographs from 
field verification allowed for detection in the GIS, because the structures were indistinguishable 
from normal terrain in the lidar visualizations. Hutson and colleagues demonstrated that lidar 
prospection techniques for archaeology face a ‘small buildings problem’, defined as when lidar-

43	  Garrison et al. 2023.
44	  Chase et al. 2011; Godone et al. 2018; Agapiou et al. 2022.
45	  Searle and Lamont 2022.
46	  Evelpidou et al. 2021.
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based survey consistently struggles at identifying buildings of certain size thresholds.47 The 
authors argue that this issue can best be corrected by selective intensive pedestrian surveys – akin 
to area-based verification – to establish correction factors to the feature count. More broadly, this 
research suggests that area-based verification could help correct systematic biases against certain 
feature types or chronological periods, a known issue in lidar classification analyses.48 Additionally, 
statistically assessing the effectiveness of visualizations for subtle feature types such as small 
buildings may optimize visualization selection.49

Among the feature types with fewer than 50 occurrences, ‘pits’ and ‘mounds’ represent large 
sources of error in this study but are in-line with the project’s prioritization of feature detection 
over precision. Both feature types have low precision, likely because natural landscape elements 
like rocky terrain and patchy vegetation created relative elevation anomalies which easily can 
be mistaken as anthropogenic (Figure 10). The emphasis placed on these minute elevation 
differentials by the local dominance visualization, potentially in conjunction with its rainbow 
color scheme,50 might have exacerbated the false positive incidents. Among the low-count feature 
types, the classification of ‘mines’ and ‘roads and paths’ was highly accurate. While the latter two 
follow the general strength of lidar for linear features, the former reflects the scars of mining 
systems on the landscape, which lidar has been effective in detecting at larger scale elsewhere in 
the Mediterranean.51 

47	  Hutson et al. 2016.
48	  Fontana (2025) assesses the sampling representation problem in lidar-based classifications.
49	  For examples of studies analyzing visualization effectiveness, see Masini et al. 2022 and Crabb et al. 2023
50	  Gołębiowska and Çöltekin (2022) note that rainbow color schemes may present data more noisily than other options, impeding 
interpretation.
51	  E.g., the detection Roman hydraulic gold mining scars in NW Spain by Fernández-Lozano et al. 2019.

Figure 9. Examples of false positive ‘terrace’ classification (A-B) and false negative ‘structure’ classification (C-D). (Map by 
B. Manquen).
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Lidar archaeology in marginal Mediterranean landscapes

The high accuracy demonstrated in this study suggests lidar classification and area-based 
verification may benefit the study of marginal archaeological landscapes in Greece and the 
Mediterranean. The dry, hard-to-reach small Cycladic islets fit the ‘emptyscape’ concept proposed 
by Campana, which theorizes that our spatial and temporal conceptions of ancient landscape 
engagements are biased against marginal environments by a lack of efficient survey mechanisms 
suited to such places. While intensive pedestrian survey alone has helped fill in these gaps in the 
Cyclades,52 our results confirm the capacity for lidar-based remote sensing methods to quickly map 
features indicative of engagements with past marginal landscapes.53

The high accuracy for terraces and pastoral structures in this study provides evidence for the utility 
of lidar-based prospection methods for the study of terraced agropastoral landscapes. Abandoned, 
overgrown terraced slopes are relatively understudied, largely due to historical difficulties 

52	  Roussos 2020; Athanasoulis et al. 2021; Knodell et al. 2022.
53	  Campana 2018; Fontana 2022.

Figure 10. Comparison of Local 
Dominance visualization (top) 
with Slope-VAT visualization 
(bottom). False positive ‘quarry’ 
features are in red, true positive 
‘quarry’ features are in blue. 
(Map by B. Manquen).
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obtaining clear chronologies for terrace use.54 Paired with recent developments in terrace 
dating,55 high accuracy lidar surveys of terraced landscapes can facilitate more comprehensive 
understandings of the extent of unknown, marginal agricultural land use, further elucidating 
spatiotemporal patterns of agricultural production and landscape investment that may not be 
reflected in agricultural valleys.56

Additionally, area-based verification results provide useful insights toward the study of lesser-
known landscapes. First, map-based verification is impossible in regions without high quality 
archaeological maps, such as the ‘emptyscapes’ where lidar may be used. Gaining the spatial 
distributions of true positives, false positives, and false negatives for each feature type enables use 
of a lidar-derived dataset as a sample area for regional spatial analyses, permitting extrapolation 
over similar, understudied landscapes.57 Error analysis is critical to assessing the overall efficacy 
of a lidar dataset and acknowledging its limitations. However, we also recognize that target-based 
or map-based approaches may be suitable for specific project designs, for example for surveys 
of specific feature types only found in known locations or in regions with high quality maps.58 
Furthermore, area-based verifications performed across larger landscapes could occur over 
subsets of the lidar dataset rather than the full coverage achieved here, considering variables 
such as existing archaeological knowledge and lidar sensor capabilities in planning the sampling 
strategy.59 

Conclusions

This article has sought to demonstrate the benefits of area-based feature verification for lidar-
derived survey datasets in Greek archaeological landscapes. In support of this, we present the 
results of our own lidar verification program, which we successfully integrated into the intensive 
pedestrian survey of the Small Cycladic Islands Project. Lidar-based survey has great potential to 
uncover previously obscured Greek archaeological landscapes.60 To maximize its utility, landscape-
scale surveys would benefit from exploiting lessons learned from mature archaeological fields 
of lidar-based research to refine transparent, reproducible research. Along with using advanced 
processing and visualization techniques, incorporating robust feature verification protocols 
that can detect sources of classification error in Mediterranean ecosystems and facilitate future 
comparative research is an essential component to any project design looking to include lidar 
data.61 Area-based verification designs that detect true positive, false positive, and false negative 
accuracy provide useful data for such comparisons.

54	  Whitelaw 1991; Bevan and Conolly 2011; Brown et al. 2020.
55	  Brown et al. 2020; Turner et al. 2021.
56	  For example, the potential link between climate cooling and terrace investment in between the 12th- to early 16th-centuries AD in 
southeastern Turkey suggested by Turner and colleagues (2021).
57	  Garrison et al. 2023; Fontana 2025. 
58	  For example, the target-based verification of hillforts by Fontana (2022) would not have benefitted from an area-based survey of the 
whole lidar DTM area, since hillforts will not be found on the valley floor.
59	  Garrison et al. 2023; see Štular, Lozić, and Eichert (2021) for their Confidence Map rasters which estimate lidar data quality across a 
given DFM.
60	  Knodell et al. 2023; Fontana 2025.
61	  Garrison et al. 2023.
62	  Hutson 2016.

SCIP’s field-verified dataset allows for useful insights into the properties of the lidar-based 
classification. Detailed discussion of acquisition, processing, and visualization methods facilitated 
the interpretation of accuracy results of linear features as potentially linked to the local dominance 
visualization and/or the rainbow color scheme. In addition to identifying the classification 
accuracies of each feature class, the specific inclusion of both false positive and false negative 
information confirmed the pattern of a ‘small building problem’62 for this research area. More 
broadly, well-founded, verified feature datasets help lidar-based archaeological prospection 



84

Brody W. Manquen, Thomas G. Garrison, Alex R. Knodell and Demetrios Athanasoulis

address existing survey biases against marginal, hard-to-reach landscapes in the Mediterranean,63 
by enabling treatment of classification results as representative samples of the broader, otherwise 
poorly known landscapes.64

Fortunately, area-based designs can be readily integrated into traditional intensive pedestrian 
survey techniques common in Mediterranean survey archaeology.65 The area-based verification 
conducted as part of SCIP utilized the side-by-side fieldwalking strategy to detect false negatives 
while a separate team verified remotely classified features. While the comprehensive coverage 
achieved as part of this survey is unrealistic for larger landscape surveys, the design principle is 
likely transferable to future lidar-based surveys when appropriate. In addition to scale, research 
questions may also impact lidar verification methods.66 Most importantly, scholars looking to 
integrate lidar into Mediterranean research must communicate with one another to produce 
lidar-enhanced survey results that are comparable between projects – as exemplified by the 
contributions to this special issue – facilitating justifiable and meaningful regional interpretations 
at increasing scales of analysis.

63	  Campana 2018.
64	  Fontana 2025.
65	  Knodell et al. 2023.
66	  Inomata et al. 2021 used publicly available lidar data to identify hundreds of new clearly visible archaeological sites in lowland 
Mesoamerica for a study focused on site plan comparisons, requiring minimal ground verification efforts.
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